PIC18F6410-I/PT Microchip Technology, PIC18F6410-I/PT Datasheet - Page 157

IC PIC MCU FLASH 8KX16 64TQFP

PIC18F6410-I/PT

Manufacturer Part Number
PIC18F6410-I/PT
Description
IC PIC MCU FLASH 8KX16 64TQFP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F6410-I/PT

Program Memory Type
FLASH
Program Memory Size
16KB (8K x 16)
Package / Case
64-TFQFP
Core Processor
PIC
Core Size
8-Bit
Speed
40MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
54
Ram Size
768 x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 12x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
768 B
Interface Type
SPI/I2C/EUSART/AUSART
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
54
Number Of Timers
4
Operating Supply Voltage
4.2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, ICE4000, DV164136, DM183032
Minimum Operating Temperature
- 40 C
On-chip Adc
12-ch x 10-bit
Package
64TQFP
Device Core
PIC
Family Name
PIC18
Maximum Speed
40 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT64PT5 - SOCKET TRAN ICE 64MQFP/TQFPAC164319 - MODULE SKT MPLAB PM3 64TQFPDV007003 - PROGRAMMER UNIVERSAL PROMATE II
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F6410-I/PT
Manufacturer:
RENESAS
Quantity:
340
Part Number:
PIC18F6410-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18F6410-I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
13.2
Timer1 can be configured for 16-bit reads and writes
(see
(T1CON<7>) is set, the address for TMR1H is mapped
to a buffer register for the high byte of Timer1. A read
from TMR1L will load the contents of the high byte of
Timer1 into the Timer1 high byte buffer. This provides
the user with the ability to accurately read all 16 bits of
Timer1 without having to determine whether a read of
the high byte, followed by a read of the low byte, has
become invalid due to a rollover between reads.
A write to the high byte of Timer1 must also take place
through the TMR1H Buffer register. The Timer1 high
byte is updated with the contents of TMR1H when a
write occurs to TMR1L. This allows a user to write all
16 bits to both the high and low bytes of Timer1 at once.
The high byte of Timer1 is not directly readable or
writable in this mode. All reads and writes must take
place through the Timer1 High Byte Buffer register.
Writes to TMR1H do not clear the Timer1 prescaler.
The prescaler is only cleared on writes to TMR1L.
13.3
An on-chip crystal oscillator circuit is incorporated
between pins, T1OSI (input) and T1OSO (amplifier
output). It is enabled by setting the Timer1 Oscillator
Enable bit, T1OSCEN (T1CON<3>). The oscillator is a
low-power circuit rated for 32 kHz crystals. It will
continue to run during all power-managed modes. The
circuit for a typical LP oscillator is shown in
Table 13-1
oscillator.
The user must provide a software time delay to ensure
proper start-up of the Timer1 oscillator.
FIGURE 13-3:
 2010 Microchip Technology Inc.
Note:
Figure
Timer1 16-Bit Read/Write Mode
Timer1 Oscillator
27 pF
27 pF
C1
C2
shows the capacitor selection for the Timer1
See the Notes with
information about capacitor selection.
13-2). When the RD16 control bit
32.768 kHz
XTAL
EXTERNAL
COMPONENTS FOR THE
TIMER1 LP OSCILLATOR
T1OSI
Table 13-1
T1OSO
PIC18FXXXX
for additional
Figure
PIC18F6310/6410/8310/8410
13-3.
TABLE 13-1:
13.3.1
The Timer1 oscillator is also available as a clock source
in power-managed modes. By setting the clock select
bits, SCS<1:0> (OSCCON<1:0>), to ‘01’, the device
switches to SEC_RUN mode; both the CPU and
peripherals are clocked from the Timer1 oscillator. If the
IDLEN bit (OSCCON<7>) is cleared and a SLEEP
instruction is executed, the device enters SEC_IDLE
mode. Additional details are available in
“Power-Managed
Whenever the Timer1 oscillator is providing the clock
source, the Timer1 System Clock Status Flag, T1RUN
(T1CON<6>), is set. This can be used to determine the
controller’s current clocking mode. It can also indicate
the clock source being currently used by the Fail-Safe
Clock Monitor. If the Clock Monitor is enabled and the
Timer1 oscillator fails while providing the clock, polling
the T1RUN bit will indicate whether the clock is being
provided by the Timer1 oscillator or another source.
13.3.2
The Timer1 oscillator can operate at two distinct levels
of power consumption based on device configuration.
When the LPT1OSC Configuration bit is set, the Timer1
oscillator operates in a low-power mode. When
LPT1OSC is not set, Timer1 operates at a higher power
level. Power consumption for a particular mode is rela-
tively constant, regardless of the device’s operating
mode. The default Timer1 configuration is the higher
power mode.
As the Low-Power Timer1 mode tends to be more
sensitive to interference, high noise environments may
cause some oscillator instability. The low-power option
is therefore best suited for low noise applications where
power
consideration.
Osc Type
Note 1: Microchip suggests these values as a
LP
2: Higher capacitance increases the stabil-
3: Since each resonator/crystal has its own
4: Capacitor values are for design guidance
conservation
USING TIMER1 AS A CLOCK
SOURCE
LOW-POWER TIMER1 OPTION
starting point in validating the oscillator
circuit.
ity of the oscillator, but also increases the
start-up time.
characteristics, the user should consult
the resonator/crystal manufacturer for
appropriate
components.
only.
32 kHz
Freq
CAPACITOR SELECTION FOR
THE TIMER OSCILLATOR
Modes”.
is
values
an
27 pF
C1
important
DS39635C-page 157
(1)
of
Section 4.0
27 pF
external
C2
design
(1)

Related parts for PIC18F6410-I/PT