ISL12027IB27Z Intersil, ISL12027IB27Z Datasheet - Page 15

no-image

ISL12027IB27Z

Manufacturer Part Number
ISL12027IB27Z
Description
IC RTC/CAL W/EEPROM 2.7V 8-SOIC
Manufacturer
Intersil
Type
Clock/Calendar/Supervisor/EEPROMr
Datasheet

Specifications of ISL12027IB27Z

Memory Size
4K (512 x 8)
Time Format
HH:MM:SS (12/24 hr)
Date Format
YY-MM-DD-dd
Interface
I²C, 2-Wire Serial
Voltage - Supply
2.7 V ~ 5.5 V
Operating Temperature
-40°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
8-SOIC (3.9mm Width)
Bus Type
Serial (I2C)
Operating Supply Voltage (typ)
3.3V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
Operating Temperature Classification
Industrial
Operating Temperature (max)
85C
Operating Temperature (min)
-40C
Pin Count
8
Mounting
Surface Mount
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ISL12027IB27Z
Manufacturer:
INTERSIL
Quantity:
20 000
Part Number:
ISL12027IB27Z-T
Manufacturer:
Intersil
Quantity:
390
There are two alarm operation modes: Single Event and
periodic Interrupt Mode:
Writing to the Alarm Registers
The Alarm Registers are non-volatile but require special
attention to insure a proper non-volatile write takes place.
Specifically, byte writes to individual registers are good for all
but registers 0006h and 0000Eh, which are the DWA0 and
DWA1 registers, respectively. Those registers will require a
special page write for non-volatile storage. The
recommended page write sequences are as follows:
1. Single Event Mode is enabled by setting the AL0E or
2. Interrupt Mode (or “Pulsed Interrupt Mode” or PIM) is
1. 16-byte page writes: The best way to write or update the
2. Other non-volatile writes: It is possible to do writes of
AL1E bit to “1”, the IM bit to “0”, and disabling the
frequency output. This mode permits a one-time match
between the alarm registers and the RTC registers. Once
this match occurs, the AL0 or AL1 bit is set to “1”. Once
the AL0 or AL1 bit is read, this will automatically reset it.
Both Alarm registers can be set at the same time to
trigger alarms. Polling the SR will reveal which alarm has
been set.
enabled by setting the AL0E or AL1E bit to “1” the IM bit
to “1”, and disabling the frequency output. If both AL0E
and AL1E bits are set to 1, then only the AL0E PIM alarm
will function (AL0E overrides AL1E). This means that
once the interrupt mode alarm is set, it will continue to
alarm for each occurring match of the alarm and present
time. This mode is convenient for hourly or daily
hardware interrupts in microcontroller applications such
as security cameras or utility meter reading. Interrupt
Mode CANNOT be used for general periodic alarms,
however, since a specific time period cannot be
programmed for interrupt, only matches to a specific time
of day. The interrupt mode is only stopped by disabling
the IM bit or the Alarm Enable bits.
Alarm Registers is to perform a 16-byte write beginning at
address 0001h (MNA0) and wrapping around and ending
at address 0000h (SCA0). This will insure that
non-volatile storage takes place. This means that the
code must be designed so that the Alarm0 data is written
starting with Minutes register, and then all the Alarm1
data, with the last byte being the Alarm0 Seconds (the
page ends at the Alarm1 Y2k register and then wraps
around to address 0000h).
Alternatively, the 16-byte page write could start with
address 0009h, wrap around and finish with address
0008h. Note that any page write ending at address
0007h or 000Fh (the highest byte in each Alarm) will not
trigger a non-volatile write, so wrapping around or
overlapping to the following Alarm's Seconds register is
advised.
less than an entire page, but the final byte must always
be addresses 0000h through 0004h or 0008h though
000Ch to trigger a non-volatile write. Writing to those
blocks of 5 bytes sequentially, or individually, will trigger a
15
ISL12027, ISL12027A
If the Alarm1 is used, SCA1 would need to have the correct
data written.
Power Control Operation
The power control circuit accepts a V
Many types of batteries can be used with Intersil RTC
products. For example, 3.0V or 3.6V Lithium batteries are
appropriate, and battery sizes are available that can power
an Intersil RTC device for up to 10 years. Another option is
to use a SuperCap for applications where V
for up to a month. See “Application Section” on page 22 for
more information.
There are two options for setting the change-over conditions
from V
register controls this operation.
Note that applications that have V
theISL12027A (standard mode) for proper start-up. The I
bus may or may not be operational during battery backup;
that function is controlled by the SBIB bit. That operation is
covered after the power control section.
OPTION 1 - STANDARD POWER CONTROL MODE
(ISL12027A)
In the Standard mode, the supply will switch over to the
battery when V
lower. In this mode, accidental operation from the battery is
prevented since the battery backup input will only be used
when the V
To select Option 1, BSW bit in the Power Register must be
set to “BSW = 0”. A description of power switchover follows.
TABLE 6. V
Option 1 - Standard Mode: Set “BSW = 0” (default for
ISL12027A)
Option 2 - Legacy/Default Mode: Set “BSW = 1” (default for
ISL12027)
BSW BIT
non-volatile write. If the DWA0 or DWA1 registers need to
be set, then enough bytes will need to be written to
overlap with the other Alarm register and trigger the
non-volatile write. For Example, if the DWA0 register is
being set, then the code can start with a multiple byte
write beginning at address 0006h, and then write 3 bytes
ending with the SCA1 register as follows:
Addr
0006h DWA0
0007h Y2K0
0008h SCA1
0
1
DD
to Battery backup mode. The BSW bit in the PWR
Name
DD
BAT
supply is shut off.
DD
V
POINT (V)
TRIP POINT WITH DIFFERENT BSW SETTING
BAT
drops below V
2.2
0
TRIP
POWER CONTROL SETTING
Standard Mode (ISL12027A)
TRIP
Legacy Mode (ISL12027)
BAT
DD
or V
> V
and a V
DD
BAT
DD
will require
, whichever is
is interrupted
BAT
August 12, 2010
input.
FN8232.8
2
C

Related parts for ISL12027IB27Z