AD7663ASTZ Analog Devices Inc, AD7663ASTZ Datasheet - Page 21

IC ADC 16BIT CMOS 48-LQFP

AD7663ASTZ

Manufacturer Part Number
AD7663ASTZ
Description
IC ADC 16BIT CMOS 48-LQFP
Manufacturer
Analog Devices Inc
Series
PulSAR®r
Datasheet

Specifications of AD7663ASTZ

Data Interface
Serial, Parallel
Number Of Bits
16
Sampling Rate (per Second)
250k
Number Of Converters
1
Power Dissipation (max)
41mW
Voltage Supply Source
Analog and Digital
Operating Temperature
-40°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
48-LQFP
Resolution (bits)
16bit
Sampling Rate
250kSPS
Input Channel Type
Differential
Supply Voltage Range - Analog
4.75V To 5.25V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
EVAL-AD7663CBZ - BOARD EVALUATION FOR AD7663
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD7663ASTZ
Manufacturer:
AD
Quantity:
513
Part Number:
AD7663ASTZ
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
AD7663ASTZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD7663ASTZRL
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Because the Serial Port within the ADSP-21065L will be seeing a
discontinuous clock, an initial word reading has to be done after
the ADSP-21065L has been reset to ensure that the Serial Port
is properly synchronized to this clock during each following data
read operation.
APPLICATION HINTS
Layout
The AD7663 has very good immunity to noise on the power
supplies as can be seen in Figure 9. However, care should still be
taken with regard to grounding layout.
The printed circuit board that houses the AD7663 should be
designed so the analog and digital sections are separated and con-
fined to certain areas of the board. This facilitates the use of
ground planes that can be easily separated. Digital and analog
ground planes should be joined in only one place, preferably
underneath the AD7663 or at least as close as possible to the
AD7663. If the AD7663 is in a system where multiple devices
require analog-to-digital ground connections, the connection
should still be made at one point only, a star ground point that
should be established as close as possible to the AD7663.
It is recommended to avoid running digital lines under the device
as these will couple noise onto the die. The analog ground plane
should be allowed to run under the AD7663 to avoid noise cou-
pling. Fast switching signals like CNVST or clocks should be
shielded with digital ground to avoid radiating noise to other
sections of the board and should never run near analog signal paths.
Crossover of digital and analog signals should be avoided. Traces
REV. B
Figure 23. Interfacing to the ADSP-21065L Using the
Serial Master Mode
DVDD
SER/PAR
RDC/SDIN
RD
EXT/INT
CS
INVSYNC
INVSCLK
*ADDITIONAL PINS OMITTED FOR CLARITY
AD7663*
SDOUT
CNVST
SYNC
SCLK
RFS
DR
RCLK
FLAG OR TFS
ADSP-21065L*
SHARC
–21–
on different but close layers of the board should run at right
angles to each other. This will reduce the effect of feedthrough
through the board.
The power supply lines to the AD7663 should use as large a trace
as possible to provide low impedance paths and reduce the effect of
glitches on the power supply lines. Good decoupling is also impor-
tant to lower the supplies’ impedance presented to the AD7663
and to reduce the magnitude of the supply spikes. Decoupling
ceramic capacitors, typically 100 nF, should be placed on all of
the power supply pins AVDD, DVDD, and OVDD close to, and
ideally right up against these pins and their corresponding ground
pins. Additionally, low ESR 10 µF capacitors should be located
in the vicinity of the ADC to further reduce low frequency ripple.
The DVDD supply of the AD7663 can be either a separate
supply or come from the analog supply, AVDD, or from the
digital interface supply, OVDD. When the system digital supply
is noisy or fast switching digital signals are present, it is recom-
mended, if no separate supply is available, to connect the DVDD
digital supply to the analog supply, AVDD, through an RC filter
as shown in Figure 5, and to connect the system supply to the
interface digital supply OVDD and the remaining digital circuitry.
When DVDD is powered from the system supply, it is useful to
insert a bead to further reduce high frequency spikes.
The AD7663 has five different ground pins: INGND, REFGND,
AGND, DGND, and OGND. INGND is used to sense the
analog input signal. REFGND senses the reference voltage and
should be a low impedance return to the reference because it
carries pulsed currents. AGND is the ground to which most internal
ADC analog signals are referenced. This ground must be con-
nected with the least resistance to the analog ground plane. DGND
must be tied to the analog or digital ground plane depending on
the configuration. OGND is connected to the digital system ground.
The layout of the decoupling of the reference voltage is important.
The decoupling capacitor should be close to the ADC and con-
nected with short and large traces to minimize parasitic inductances.
Evaluating the AD7663 Performance
A recommended layout for the AD7663 is outlined in the evalu-
ation board for the AD7663. The evaluation board package includes
a fully assembled and tested evaluation board, documentation,
and software for controlling the board from a PC via the Eval-
Control Board.
AD7663

Related parts for AD7663ASTZ