ATtiny88 Atmel Corporation, ATtiny88 Datasheet - Page 166

no-image

ATtiny88

Manufacturer Part Number
ATtiny88
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATtiny88

Flash (kbytes)
8 Kbytes
Pin Count
32
Max. Operating Frequency
12 MHz
Cpu
8-bit AVR
# Of Touch Channels
12
Hardware Qtouch Acquisition
No
Max I/o Pins
28
Ext Interrupts
28
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
0.5
Eeprom (bytes)
64
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
2
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATtiny88-12AU
Manufacturer:
ATMEL
Quantity:
2 165
Part Number:
ATtiny88-15AZ
Manufacturer:
Atmel
Quantity:
7 370
Part Number:
ATtiny88-15AZ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATtiny88-15MZ
Manufacturer:
ATMEL
Quantity:
3 500
Part Number:
ATtiny88-15MZ
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny88-AU
Manufacturer:
ATMEL
Quantity:
5 000
Part Number:
ATtiny88-AU
Manufacturer:
ATMEL
Quantity:
3 000
Part Number:
ATtiny88-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATtiny88-AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny88-AUR
Manufacturer:
Atmel
Quantity:
10 000
Company:
Part Number:
ATtiny88-MMU
Quantity:
253
Part Number:
ATtiny88-MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny88-MUR
Manufacturer:
AT
Quantity:
20 000
The analog input channel is selected by writing to the MUX bits in ADMUX. Any of the ADC input
pins, as well as GND and a fixed bandgap voltage reference, can be selected as single ended
inputs to the ADC.
The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage reference and
input channel selections will not go into effect until ADEN is set. The ADC does not consume
power when ADEN is cleared, so it is recommended to switch off the ADC before entering power
saving sleep modes.
The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and
ADCL. By default, the result is presented right adjusted, but can optionally be presented left
adjusted by setting the ADLAR bit in ADMUX.
If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH, only. Otherwise, ADCL must be read first, then ADCH, to ensure that the content of the
Data Registers belongs to the same conversion. Once ADCL is read, ADC access to Data Reg-
isters is blocked. This means that if ADCL has been read, and a conversion completes before
ADCH is read, neither register is updated and the result from the conversion is lost. When ADCH
is read, ADC access to the ADCH and ADCL Registers is re-enabled.
The ADC has its own interrupt which can be triggered when a conversion completes. When ADC
access to the Data Registers is prohibited between reading of ADCH and ADCL, the interrupt
will trigger even if the result is lost.
17.4
Starting a Conversion
Make sure the ADC is powered by clearing the ADC Power Reduction bit, PRADC, in the Power
Reduction Register, PRR (see
“PRR – Power Reduction Register” on page
40). A single conver-
sion is started by writing a logical one to the ADC Start Conversion bit, ADSC. This bit stays high
as long as the conversion is in progress and will be cleared by hardware when the conversion is
completed. If a different data channel is selected while a conversion is in progress, the ADC will
finish the current conversion before performing the channel change.
Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is
enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is
selected by setting the ADC Trigger Select bits, ADTS in ADCSRB (See description of the ADTS
bits for a list of the trigger sources). When a positive edge occurs on the selected trigger signal,
the ADC prescaler is reset and a conversion is started. This provides a method of starting con-
versions at fixed intervals. If the trigger signal still is set when the conversion completes, a new
conversion will not be started. If another positive edge occurs on the trigger signal during con-
version, the edge will be ignored. Note that an Interrupt Flag will be set even if the specific
interrupt is disabled or the Global Interrupt Enable bit in SREG is cleared. A conversion can thus
be triggered without causing an interrupt. However, the Interrupt Flag must be cleared in order to
trigger a new conversion at the next interrupt event.
ATtiny48/88
166
8008H–AVR–04/11

Related parts for ATtiny88