AD6649 Analog Devices, AD6649 Datasheet - Page 31

no-image

AD6649

Manufacturer Part Number
AD6649
Description
IF Diversity Receiver
Manufacturer
Analog Devices
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD6649BCPZ
Manufacturer:
ADI
Quantity:
275
Part Number:
AD6649BCPZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Company:
Part Number:
AD6649BCPZ
Quantity:
2 900
Part Number:
AD6649BCPZRL7
Manufacturer:
ADI
Quantity:
1 250
Data Sheet
MEMORY MAP
READING THE MEMORY MAP REGISTER TABLE
Each row in the memory map register table has eight bit locations.
The memory map is roughly divided into four sections: the chip
configuration registers (Address 0x00 to Address 0x02); the
channel index and transfer registers (Address 0x05 and
Address 0xFF); the ADC functions registers, including setup,
control, and test (Address 0x08 to Address 0x3A); and the digital
feature control registers (Address 0x40 to Address 0x5A).
The memory map register table (see Table 15) documents the
default hexadecimal value for each hexadecimal address shown.
The column with the heading Bit 7 (MSB) is the start of the
default hexadecimal value given. For example, Address 0x14,
the output mode register, has a hexadecimal default value of
0x05. This means that Bit 0 = 1 and the remaining bits are 0s.
This setting is the default output format value, which is twos
complement. For more information on this function and others,
see the
ADCs via SPI. This document details the functions controlled
by Register 0x00 to Register 0x25. The remaining registers, from
Register 0x3A to Register 0x5A, are documented in the Memory
Map Register Description section.
Open and Reserved Locations
All address and bit locations that are not included in Table 15
are not currently supported for this device. Unused bits of a
valid address location should be written with 0s. Writing to these
locations is required only when part of an address location is
open (for example, Address 0x18). If the entire address location
is open (for example, Address 0x13), this address location should
not be written.
Default Values
After the AD6649 is reset, critical registers are loaded with
default values. The default values for the registers are given in
the memory map register table, Table 15.
AN-877 Application
Note, Interfacing to High Speed
Rev. A | Page 31 of 40
Logic Levels
An explanation of logic level terminology follows:
Transfer Register Map
Address 0x08 to Address 0x20, Address 0x3A, Address 0x40 to
Address 0x42, Address 0x45 to 0x4C, and Address 0x50 to
Address 0x5A are shadowed. Writes to these addresses do
not affect part operation until a transfer command is issued by
writing 0x01 to Address 0xFF, setting the transfer bit. This allows
these registers to be updated internally and simultaneously when
the transfer bit is set. The internal update takes place when the
transfer bit is set, and then the bit autoclears.
Channel-Specific Registers
Some channel setup functions, such as the signal monitor thresh-
olds, can be programmed to a different value for each channel.
In these cases, channel address locations are internally duplicated
for each channel. These registers and bits are designated in Table 15
as local. These local registers and bits can be accessed by setting
the appropriate Channel A or Channel B bits in Register 0x05. If
both bits are set, the subsequent write affects the registers of both
channels. In a read cycle, only Channel A or Channel B should
be set to read one of the two registers. If both bits are set during
an SPI read cycle, the part returns the value for Channel A.
Registers and bits designated as global in Table 15 affect the
entire part and the channel features for which independent
settings are not allowed between channels. The settings in
Register 0x05 do not affect the global registers and bits.
“Bit is set” is synonymous with “bit is set to Logic 1” or
“writing Logic 1 for the bit. ”
“Clear a bit” is synonymous with “bit is set to Logic 0” or
“writing Logic 0 for the bit. ”
AD6649

Related parts for AD6649