ISL6251A Intersil Corporation, ISL6251A Datasheet - Page 18

no-image

ISL6251A

Manufacturer Part Number
ISL6251A
Description
Low Cost Multi-chemistry Battery Charger Controller
Manufacturer
Intersil Corporation
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ISL6251AHAZ
Manufacturer:
Intersil
Quantity:
800
Part Number:
ISL6251AHAZ
Manufacturer:
INT
Quantity:
20 000
Part Number:
ISL6251AHAZ-T
Manufacturer:
INTERSIL
Quantity:
2 500
Part Number:
ISL6251AHAZ-T
Manufacturer:
ST
0
Part Number:
ISL6251AHAZ-T
Manufacturer:
INTERSIL
Quantity:
20 000
Part Number:
ISL6251AHRZ
Manufacturer:
Intersil
Quantity:
509
Part Number:
ISL6251AHRZ
Manufacturer:
INTERSIL
Quantity:
300
Part Number:
ISL6251AHRZ-T
Manufacturer:
RENESAS/瑞萨
Quantity:
20 000
PCB Layout Considerations
Power and Signal Layers Placement on the PCB
As a general rule, power layers should be close together,
either on the top or bottom of the board, with signal layers on
the opposite side of the board. As an example, layer
arrangement on a 4-layer board is shown below:
Separate the power voltage and current flowing path from
the control and logic level signal path. The controller IC will
stay on the signal layer, which is isolated by the signal
ground to the power signal traces.
Component Placement
The power MOSFET should be close to the IC so that the
gate drive signal, the LGATE, UGATE, PHASE, and BOOT,
traces can be short.
Place the components in such a way that the area under the
IC has less noise traces with high dv/dt and di/dt, such as
gate signals and phase node signals.
Signal Ground and Power Ground Connection.
At minimum, a reasonably large area of copper, which will
shield other noise couplings through the IC, should be used
as signal ground beneath the IC. The best tie-point between
the signal ground and the power ground is at the negative
side of the output capacitor on each side, where there is little
noise; a noisy trace beneath the IC is not recommended.
GND and VDD Pin
At least one high quality ceramic decoupling cap should be
used to cross these two pins. The decoupling cap can be put
close to the IC.
LGATE Pin
This is the gate drive signal for the bottom MOSFET of the
buck converter. The signal going through this trace has both
high dv/dt and high di/dt, and the peak charging and
discharging current is very high. These two traces should be
short, wide, and away from other traces. There should be no
other traces in parallel with these traces on any layer.
PGND Pin
PGND pin should be laid out to the negative side of the
relevant output cap with separate traces. The negative side
of the output capacitor must be close to the source node of
the bottom MOSFET. This trace is the return path of LGATE.
1. Top Layer: signal lines, or half board for signal lines and
2. Signal Ground
3. Power Layers: Power Ground
4. Bottom Layer: Power MOSFET, Inductors and other
the other half board for power lines
Power traces
18
ISL6251, ISL6251A
PHASE Pin
This trace should be short, and positioned away from other
weak signal traces. This node has a very high dv/dt with a
voltage swing from the input voltage to ground. No trace
should be in parallel with it. This trace is also the return path
for UGATE. Connect this pin to the high-side MOSFET
source.
UGATE Pin
This pin has a square shape waveform with high dv/dt. It
provides the gate drive current to charge and discharge the
top MOSFET with high di/dt. This trace should be wide,
short, and away from other traces similar to the LGATE.
BOOT Pin
This pin’s di/dt is as high as the UGATE; therefore, this trace
should be as short as possible.
CSOP, CSON Pins
The current sense resistor connects to the CSON and the
CSOP pins through a low pass filter. The CSON pin is also
used as the battery voltage feedback. The traces should be
away from the high dv/dt and di/di pins like PHASE, BOOT
pins. In general, the current sense resistor should be close
to the IC. Other layout arrangements should be adjusted
accordingly.
EN Pin
This pin stays high at enable mode and low at idle mode and
is relatively robust. Enable signals should refer to the signal
ground.
DCIN Pin
This pin connects to AC adapter output voltage, and should
be less noise sensitive.
Copper Size for the Phase Node
The capacitance of PHASE should be kept very low to
minimize ringing. It would be best to limit the size of the
PHASE node copper in strict accordance with the current
and thermal management of the application.
Identify the Power and Signal Ground
The input and output capacitors of the converters, the source
terminal of the bottom switching MOSFET PGND should
connect to the power ground. The other components should
connect to signal ground. Signal and power ground are tied
together at one point.
Clamping Capacitor for Switching MOSFET
It is recommended that ceramic caps be used closely
connected to the drain of the high-side MOSFET, and the
source of the low-side MOSFET. This capacitor reduces the
noise and the power loss of the MOSFET.
May 10, 2006
FN9202.2

Related parts for ISL6251A