IRS26302DJPBF International Rectifier, IRS26302DJPBF Datasheet - Page 29

IC BRIDGE +1 GATE DVR 3PH 44PLCC

IRS26302DJPBF

Manufacturer Part Number
IRS26302DJPBF
Description
IC BRIDGE +1 GATE DVR 3PH 44PLCC
Manufacturer
International Rectifier
Datasheet

Specifications of IRS26302DJPBF

Configuration
3 Phase Bridge
Input Type
Non-Inverting
Delay Time
320ns
Current - Peak
200mA
Number Of Configurations
1
Number Of Outputs
3
High Side Voltage - Max (bootstrap)
600V
Voltage - Supply
10 V ~ 20 V
Operating Temperature
-40°C ~ 125°C
Mounting Type
Surface Mount
Package / Case
44-PLCC (32 Leads)
Number Of Drivers
6
Driver Configuration
Non-Inverting
Driver Type
High and Low Side
Input Logic Level
CMOS/TTL
Rise Time
190ns
Fall Time
75ns
Propagation Delay Time
710ns
Peak Output Current
350mA
Power Dissipation
4.6W
Operating Supply Voltage (min)
10V
Turn Off Delay Time
50ns
Turn On Delay Time (max)
50ns
Operating Temp Range
-40C to 125C
Operating Temperature Classification
Automotive
Mounting
Surface Mount
Pin Count
32
Package Type
PLCC
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
IRS26302DJPBF
Manufacturer:
International Rectifier
Quantity:
10 000
IRS26302DJ
Integrated Bootstrap Functionality
The IRS26302DJ features integrated high-voltage bootstrap MOSFETs that eliminate the need of the external
bootstrap diodes and resistors in many applications.
There is one bootstrap MOSFET for each high-side output channel and it is connected between the V
supply and
CC
its respective floating supply (i.e., V
, V
, V
); see Figure 24 for an illustration of this internal connection.
B1
B2
B3
The integrated bootstrap MOSFET is turned on only during the time when LO is ‘high’, and it has a limited source
current due to R
. The V
voltage will be charged each cycle depending on the on-time of LO and the value of the
BS
BS
C
capacitor, the drain-source (collector-emitter) drop of the external IGBT (or MOSFET), and the low-side free-
BS
wheeling diode drop.
The bootstrap MOSFET of each channel follows the state of the respective low-side output stage (i.e., the bootstrap
MOSFET is ON when LO is high, it is OFF when LO is low), unless the V
voltage is higher than approximately 110%
B
of V
. In that case, the bootstrap MOSFET is designed to remain off until V
returns below that threshold; this
CC
B
concept is illustrated in Figure 25.
Figure 24: Internal bootstrap MOSFET connection
Figure 25: Bootstrap MOSFET state diagram
A bootstrap MOSFET is suitable for most of the PWM modulation schemes and can be used either in parallel with the
external bootstrap network (i.e., diode and resistor) or as a replacement of it. The use of the integrated bootstrap as
a replacement of the external bootstrap network may have some limitations. An example of this limitation may arise
when this functionality is used in non-complementary PWM schemes (typically 6-step modulations) and at very high
PWM duty cycle. In these cases, superior performances can be achieved by using an external bootstrap diode in
parallel with the internal bootstrap network.
Bootstrap Power Supply Design
For information related to the design of the bootstrap power supply while using the integrated bootstrap functionality
of the IRS26302DJ, please refer to Application Note 1123 (AN-1123) entitled “Bootstrap Network Analysis: Focusing
on the Integrated Bootstrap Functionality.” This application note is available at www.irf.com.
For information related to the design of a standard bootstrap power supply (i.e., using an external discrete diode)
please refer to Design Tip 04-4 (DT04-4) entitled “Using Monolithic High Voltage Gate Drivers.” This design tip is
available at www.irf.com.
www.irf.com
© 2009 International Rectifier
29

Related parts for IRS26302DJPBF