ADUC834BSZ Analog Devices Inc, ADUC834BSZ Datasheet - Page 12

IC ADC DUAL16/24BIT W/MCU 52MQFP

ADUC834BSZ

Manufacturer Part Number
ADUC834BSZ
Description
IC ADC DUAL16/24BIT W/MCU 52MQFP
Manufacturer
Analog Devices Inc
Series
MicroConverter® ADuC8xxr
Datasheets

Specifications of ADUC834BSZ

Core Size
8-Bit
Program Memory Size
62KB (62K x 8)
Oscillator Type
Internal
Core Processor
8052
Speed
12.58MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
POR, PSM, PWM, Temp Sensor, WDT
Number Of I /o
34
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
2.25K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.25 V
Data Converters
A/D 3x16b, 4x24b; D/A 1x12b
Operating Temperature
-40°C ~ 125°C
Package / Case
52-MQFP, 52-PQFP
Controller Family/series
(8052) ADUC
No. Of I/o's
26
Eeprom Memory Size
62KB
Ram Memory Size
2KB
Cpu Speed
12.58MHz
Package
52MQFP
Device Core
8052
Family Name
ADuC8xx
Maximum Speed
12.58 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
26
Interface Type
I2C/SPI/UART
On-chip Adc
4-chx16-bit|4-chx24-bit
On-chip Dac
1-chx12-bit
Number Of Timers
3
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ADUC834BSZ
Manufacturer:
TOSHIBA
Quantity:
1 200
Part Number:
ADUC834BSZ
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
ADUC834BSZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
ADuC834
Pin No. Pin No.
52-Lead 56-Lead
MQFP
28–31
36–39
32
33
40
41
42
43–46
49–52
*I = Input, O = Output, S = Supply.
CSP
30–33
39–42
34
35
43
44
45
46–49
52–55
P2.0–P2.7
P0.0–P0.7
(AD0–AD3)
Mnemonic
(A8–A15)
(A16–A23)
XTAL1
XTAL2
EA
PSEN
ALE
(AD4–AD7)
I/O
I/O
Type* Description
I
O
I/O
O
O
PIN FUNCTION DESCRIPTIONS (continued)
Port 2 is a bidirectional port with internal pull-up resistors. Port 2 pins that have 1s
written to them are pulled high by the internal pull-up resistors, and in that state can
be used as inputs. As inputs, Port 2 pins being pulled externally low will source current
because of the internal pull-up resistors.
Port 2 emits the high order address bytes during fetches from external program memory
and middle and high order address bytes during accesses to the 24-bit external data
memory space.
Input to the Crystal Oscillator Inverter
Output from the Crystal Oscillator Inverter. (See “Hardware Design Considerations”
for description.)
External Access Enable, Logic Input. When held high, this input enables the device
to fetch code from internal program memory locations 0000h to F7FFh. When held
low, this input enables the device to fetch all instructions from external program
memory. To determine the mode of code execution, i.e., internal or external, the
EA pin is sampled at the end of an external RESET assertion or as part of a device
power cycle. EA may also be used as an external emulation I/O pin, and therefore
the voltage level at this pin must not be changed during normal mode operation
as it may cause an emulation interrupt that will halt code execution.
Program Store Enable, Logic Output. This output is a control signal that enables
the external program memory to the bus during external fetch operations. It is
active every six oscillator periods except during external data memory accesses.
This pin remains high during internal program execution.
PSEN can also be used to enable serial download mode when pulled low through a
resistor at the end of an external RESET assertion or as part of a device power cycle.
Address Latch Enable, Logic Output. This output is used to latch the low byte (and
page byte for 24-bit data address space accesses) of the address to external memory
during external code or data memory access cycles. It is activated every six oscillator
periods except during an external data memory access. It can be disabled by setting
the PCON.4 bit in the PCON SFR.
P0.0–P0.7, these pins are part of Port0, which is an 8-bit, open-drain, bidirectional
I/O port. Port 0 pins that have 1s written to them float and in that state can be used
as high impedance inputs. An external pull-up resistor will be required on P0 outputs
to force a valid logic high level externally. Port 0 is also the multiplexed low-order
address and databus during accesses to external program or data memory. In this
application, it uses strong internal pull-ups when emitting 1s.
–12–
REV. A

Related parts for ADUC834BSZ