PIC16LF819T-E/SO Microchip Technology, PIC16LF819T-E/SO Datasheet - Page 40

IC PIC MCU FLASH 2KX14 18SOIC

PIC16LF819T-E/SO

Manufacturer Part Number
PIC16LF819T-E/SO
Description
IC PIC MCU FLASH 2KX14 18SOIC
Manufacturer
Microchip Technology
Series
PIC® 16Fr
Datasheets

Specifications of PIC16LF819T-E/SO

Core Processor
PIC
Core Size
8-Bit
Speed
10MHz
Connectivity
I²C, SPI
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
16
Program Memory Size
3.5KB (2K x 14)
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
256 x 8
Voltage - Supply (vcc/vdd)
2 V ~ 5.5 V
Data Converters
A/D 5x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
18-SOIC (7.5mm Width)
Lead Free Status / RoHS Status
Request inventory verification / Request inventory verification
PIC18F2450/4450
3.4.1
This mode is unique among the three low-power Idle
modes in that it does not disable the primary device
clock. For timing sensitive applications, this allows for
the fastest resumption of device operation, with its
more accurate primary clock source, since the clock
source does not have to “warm up” or transition from
another oscillator.
PRI_IDLE mode is entered from PRI_RUN mode by
setting the IDLEN bit and executing a SLEEP
instruction. If the device is in another Run mode, set
IDLEN first, then clear the SCS bits and execute
SLEEP. Although the CPU is disabled, the peripherals
continue to be clocked from the primary clock source
specified by the FOSC3:FOSC0 Configuration bits.
The OSTS bit remains set (see Figure 3-7).
When a wake event occurs, the CPU is clocked from the
primary clock source. A delay of interval T
required between the wake event and when code
execution starts. This is required to allow the CPU to
become ready to execute instructions. After the wake-
up, the OSTS bit remains set. The IDLEN and SCS bits
are not affected by the wake-up (see Figure 3-8).
FIGURE 3-7:
FIGURE 3-8:
DS39760D-page 38
CPU Clock
Peripheral
CPU Clock
Program
Peripheral
Counter
Program
OSC1
Counter
Clock
OSC1
Clock
PRI_IDLE MODE
Q1
Q1
TRANSITION TIMING FOR ENTRY TO IDLE MODE
TRANSITION TIMING FOR WAKE FROM IDLE TO RUN MODE
Wake Event
Q2
PC
Q3
T
CSD
Q4
CSD
is
Q1
PC
3.4.2
In SEC_IDLE mode, the CPU is disabled but the
peripherals continue to be clocked from the Timer1
oscillator. This mode is entered from SEC_RUN by
setting the IDLEN bit and executing a SLEEP
instruction. If the device is in another Run mode, set
IDLEN first, then set SCS1:SCS0 to ‘01’ and execute
SLEEP. When the clock source is switched to the
Timer1 oscillator, the primary oscillator is shut down,
the OSTS bit is cleared and the T1RUN bit is set.
When a wake event occurs, the peripherals continue to
be clocked from the Timer1 oscillator. After an interval of
T
ing code being clocked by the Timer1 oscillator. The
IDLEN and SCS bits are not affected by the wake-up;
the Timer1 oscillator continues to run (see Figure 3-8).
CSD
Note:
following the wake event, the CPU begins execut-
SEC_IDLE MODE
The Timer1 oscillator should already be
running prior to entering SEC_IDLE mode.
If the T1OSCEN bit is not set when the
SLEEP instruction is executed, the SLEEP
instruction will be ignored and entry to
SEC_IDLE mode will not occur. If the
Timer1 oscillator is enabled but not yet run-
ning, peripheral clocks will be delayed until
the oscillator has started. In such situations,
initial oscillator operation is far from stable
and unpredictable operation may result.
PC + 2
Q2
© 2008 Microchip Technology Inc.
Q3
Q4

Related parts for PIC16LF819T-E/SO