PN5331B3HN/C270,51 NXP Semiconductors, PN5331B3HN/C270,51 Datasheet - Page 35

no-image

PN5331B3HN/C270,51

Manufacturer Part Number
PN5331B3HN/C270,51
Description
IC NFC NEAR FIELD CTLR 40HVQFN
Manufacturer
NXP Semiconductors
Datasheets

Specifications of PN5331B3HN/C270,51

Rf Type
Read / Write
Frequency
13.56MHz
Features
ISO14443A, ISO1443B
Package / Case
40-VFQFN Exposed Pad
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
935287868518
NXP Semiconductors
LPC2364_65_66_67_68_6
Product data sheet
7.25.6 Memory mapping control
7.26.1 EmbeddedICE
7.26.2 Embedded trace
7.26 Emulation and debugging
The memory mapping control alters the mapping of the interrupt vectors that appear at the
beginning at address 0x0000 0000. Vectors may be mapped to the bottom of the Boot
ROM or the SRAM. This allows code running in different memory spaces to have control
of the interrupts.
The LPC2364/65/66/67/68 support emulation and debugging via a JTAG serial port. A
trace port allows tracing program execution. Debugging and trace functions are
multiplexed only with GPIOs on P2[0] to P2[9]. This means that all communication, timer,
and interface peripherals residing on other pins are available during the development and
debugging phase as they are when the application is run in the embedded system itself.
The EmbeddedICE logic provides on-chip debug support. The debugging of the target
system requires a host computer running the debugger software and an EmbeddedICE
protocol convertor. The EmbeddedICE protocol convertor converts the Remote Debug
Protocol commands to the JTAG data needed to access the ARM7TDMI-S core present
on the target system.
The ARM core has a Debug Communication Channel (DCC) function built-in. The DCC
allows a program running on the target to communicate with the host debugger or another
separate host without stopping the program flow or even entering the debug state. The
DCC is accessed as a co-processor 14 by the program running on the ARM7TDMI-S
core. The DCC allows the JTAG port to be used for sending and receiving data without
affecting the normal program flow. The DCC data and control registers are mapped in to
addresses in the EmbeddedICE logic.
The JTAG clock (TCK) must be slower than
interface to operate.
Since the LPC2364/65/66/67/68 have significant amounts of on-chip memories, it is not
possible to determine how the processor core is operating simply by observing the
external pins. The ETM provides real-time trace capability for deeply embedded
processor cores. It outputs information about processor execution to a trace port. A
software debugger allows configuration of the ETM using a JTAG interface and displays
the trace information that has been captured.
The ETM is connected directly to the ARM core and not to the main AMBA system bus. It
compresses the trace information and exports it through a narrow trace port. An external
Trace Port Analyzer captures the trace information under software debugger control. The
trace port can broadcast the Instruction trace information. Instruction trace (or PC trace)
shows the flow of execution of the processor and provides a list of all the instructions that
were executed. Instruction trace is significantly compressed by only broadcasting branch
addresses as well as a set of status signals that indicate the pipeline status on a cycle by
cycle basis. Trace information generation can be controlled by selecting the trigger
resource. Trigger resources include address comparators, counters and sequencers.
Rev. 06 — 1 February 2010
1
LPC2364/65/66/67/68
Single-chip 16-bit/32-bit microcontrollers
6
of the CPU clock (CCLK) for the JTAG
© NXP B.V. 2010. All rights reserved.
35 of 59

Related parts for PN5331B3HN/C270,51