EPM240GM100C5N Altera, EPM240GM100C5N Datasheet - Page 18

IC MAX II CPLD 240 LE 100-MBGA

EPM240GM100C5N

Manufacturer Part Number
EPM240GM100C5N
Description
IC MAX II CPLD 240 LE 100-MBGA
Manufacturer
Altera
Series
MAX® IIr

Specifications of EPM240GM100C5N

Programmable Type
In System Programmable
Delay Time Tpd(1) Max
4.7ns
Voltage Supply - Internal
1.71 V ~ 1.89 V
Number Of Logic Elements/blocks
240
Number Of Macrocells
192
Number Of I /o
80
Operating Temperature
0°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
100-MBGA
Voltage
1.8V
Memory Type
FLASH
Number Of Logic Elements/cells
240
Family Name
MAX II
# Macrocells
192
Frequency (max)
1.8797GHz
Propagation Delay Time
7.5ns
Number Of Logic Blocks/elements
24
# I/os (max)
80
Operating Supply Voltage (typ)
1.8V
In System Programmable
Yes
Operating Supply Voltage (min)
1.71V
Operating Supply Voltage (max)
1.89V
Operating Temp Range
0C to 85C
Operating Temperature Classification
Commercial
Mounting
Surface Mount
Pin Count
100
Package Type
MBGA
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Features
-
Lead Free Status / Rohs Status
Compliant
Other names
544-1726

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
EPM240GM100C5N
Manufacturer:
CYPESS
Quantity:
1
Part Number:
EPM240GM100C5N
Manufacturer:
ALTERA10
Quantity:
1 287
Part Number:
EPM240GM100C5N
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EPM240GM100C5N
Manufacturer:
ALTERA
0
Part Number:
EPM240GM100C5N
Manufacturer:
ALTERA/阿尔特拉
Quantity:
20 000
2–10
Figure 2–8. LE in Dynamic Arithmetic Mode
Note to
(1) The addnsub signal is tied to the carry input for the first LE of a carry chain only.
MAX II Device Handbook
LAB Carry-In
Carry-In0
Carry-In1
Figure
data1
data2
data3
(LAB Wide)
addnsub
2–8:
(1)
The other two LUTs use the data1 and data2 signals to generate two possible carry-out
signals: one for a carry of 1 and the other for a carry of 0. The carry-in0 signal acts
as the carry-select for the carry-out0 output and carry-in1 acts as the carry-
select for the carry-out1 output. LEs in arithmetic mode can drive out registered
and unregistered versions of the LUT output.
The dynamic arithmetic mode also offers clock enable, counter enable, synchronous
up/down control, synchronous clear, synchronous load, and dynamic
adder/subtractor options. The LAB local interconnect data inputs generate the
counter enable and synchronous up/down control signals. The synchronous clear
and synchronous load options are LAB-wide signals that affect all registers in the
LAB. The Quartus II software automatically places any registers that are not used by
the counter into other LABs. The addnsub LAB-wide signal controls whether the LE
acts as an adder or subtractor.
Carry-Select Chain
The carry-select chain provides a very fast carry-select function between LEs in
dynamic arithmetic mode. The carry-select chain uses the redundant carry calculation
to increase the speed of carry functions. The LE is configured to calculate outputs for a
possible carry-in of 0 and carry-in of 1 in parallel. The carry-in0 and carry-in1
signals from a lower-order bit feed forward into the higher-order bit via the parallel
carry chain and feed into both the LUT and the next portion of the carry chain. Carry-
select chains can begin in any LE within an LAB.
Carry-Out0
LUT
LUT
LUT
LUT
Carry-Out1
Register chain
connection
clock (LAB Wide)
(LAB Wide)
ena (LAB Wide)
aclr (LAB Wide)
sload
(LAB Wide)
sclear
Register Feedback
(LAB Wide)
ADATA
ENA
D
ALD/PRE
aload
CLRN
Q
© October 2008 Altera Corporation
Chapter 2: MAX II Architecture
Row, column, and
direct link routing
Row, column, and
direct link routing
Local routing
LUT chain
connection
Register
chain output
Logic Elements

Related parts for EPM240GM100C5N