ADV7181BCP Analog Devices Inc, ADV7181BCP Datasheet - Page 26

IC VIDEO DECODER NTSC 64-LFCSP

ADV7181BCP

Manufacturer Part Number
ADV7181BCP
Description
IC VIDEO DECODER NTSC 64-LFCSP
Manufacturer
Analog Devices Inc
Type
Video Decoderr
Datasheets

Specifications of ADV7181BCP

Applications
Recorders, Set-Top Boxes
Voltage - Supply, Analog
3.15 V ~ 3.45 V
Voltage - Supply, Digital
1.65 V ~ 2 V
Mounting Type
Surface Mount
Package / Case
64-LFCSP
Adc/dac Resolution
9b
Screening Level
Industrial
Package Type
LFCSP EP
Pin Count
64
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
For Use With
EVAL-ADV7181BEB - BOARD EVALUATION FOR ADV7181
Lead Free Status / RoHS Status
Compliant, Contains lead / RoHS non-compliant
ADV7181
CLAMP OPERATION
The input video is ac-coupled into the ADV7181 through a
0.1 µF capacitor. It is recommended that the range of the input
video signal is 0.5 V to 1.6 V (typically 1 V p-p). If the signal
exceeds this range, it cannot be processed correctly in the
decoder. Since the input signal is ac-coupled into the decoder,
its dc value needs to be restored. This process is referred to as
clamping the video. This section explains the general process of
clamping on the ADV7181 and shows the different ways in
which a user can configure its behavior.
The ADV7181 uses a combination of current sources and a
digital processing block for clamping, as shown in Figure 9.
The analog processing channel shown is replicated three times
inside the IC. While only one single channel (and only one
ADC) would be needed for a CVBS signal, two independent
channels are needed for YC (S-VHS) type signals, and three
independent channels are needed to allow component signals
(YPrPb) to be processed.
The clamping can be divided into two sections:
The ADCs can digitize an input signal only if it resides within
the ADC’s 1.6 V input voltage range. An input signal with a dc
level that is too large or too small is clipped at the top or bottom
of the ADC range.
The primary task of the analog clamping circuits is to ensure
that the video signal stays within the valid ADC input window
so the analog-to-digital conversion can take place. It is not nec-
essary to clamp the input signal with a very high accuracy in the
analog domain as long as the video signal fits the ADC range.
After digitization, the digital fine clamp block corrects for any
remaining variations in dc level. Since the dc level of an input
video signal refers directly to the brightness of the picture
transmitted, it is important to perform a fine clamp with high
accuracy; otherwise, brightness variations may occur. Further-
more, dynamic changes in the dc level almost certainly lead to
visually objectionable artifacts, and must therefore be prohibited.
sources.
Clamping after the ADC (digital domain): digital
processing block.
Clamping before the ADC (analog domain): current
ANALOG
VIDEO
INPUT
SOURCES
CURRENT
FINE
COARSE
CURRENT
SOURCES
Figure 9. Clamping Overview
Rev. B | Page 26 of 104
ADC
The clamping scheme has to complete two tasks: it must be able
to acquire a newly connected video signal with a completely
unknown dc level, and it must maintain the dc level during
normal operation.
For a fast acquiring of an unknown video signal, the large
current clamps may be activated. (It is assumed that the
amplitude of the video signal at this point is of a nominal
value.) Control of the coarse and fine current clamp parameters
is performed automatically by the decoder.
Standard definition video signals may have excessive noise on
them. In particular, CVBS signals transmitted by terrestrial
broadcast and demodulated using a tuner usually show very
large levels of noise (>100 mV). A voltage clamp would be
unsuitable for this type of video signal. Instead, the ADV7181
employs a set of four current sources that can cause coarse
(>0.5 mA) and fine (<0.1 mA) currents to flow into and away
from the high impedance node that carries the video signal (see
Figure 9).
The following sections describe the I
to influence the behavior of the clamping.
Previous revisions of the ADV7181 had controls (FACL/FICL,
fast and fine clamp length) to allow configuration of the length
for which the coarse (fast) and fine current sources are switched
on. These controls were removed on the ADV7181-FT and
replaced by an adaptive scheme.
CCLEN Current Clamp Enable, Address 0x14 [4]
The current clamp enable bit allows the user to switch off the
current sources in the analog front end altogether. This may be
useful if the incoming analog video signal is clamped externally.
Table 55. CCLEN Function
CCLEN
0
1 (default)
PROCESSOR
CLAMP CONTROL
DATA
(DPP)
PRE
WITH DIGITAL
FINE CLAMP
Description
Current sources switched off.
Current sources enabled.
SDP
2
C signals that can be used

Related parts for ADV7181BCP