ATmega16HVB Atmel Corporation, ATmega16HVB Datasheet - Page 22

no-image

ATmega16HVB

Manufacturer Part Number
ATmega16HVB
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega16HVB

Flash (kbytes)
16 Kbytes
Pin Count
44
Max. Operating Frequency
8 MHz
Cpu
8-bit AVR
# Of Touch Channels
8
Hardware Qtouch Acquisition
No
Max I/o Pins
17
Ext Interrupts
15
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
12
Adc Speed (ksps)
1.9
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
4.0 to 25
Operating Voltage (vcc)
4.0 to 25
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
4
Input Capture Channels
2
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega16HVB-8X3
Manufacturer:
LT
Quantity:
51
Part Number:
ATmega16HVB-8X3
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
22
ATmega16HVB/32HVB
EEPROM. The EEMPE bit must be written to one before a logical one is written to EEPE, other-
wise no EEPROM write takes place. The following procedure should be followed when writing
the EEPROM (the order of steps 2 and 3 is not essential):
1. Wait until EEPE becomes zero.
2. Write new EEPROM address to EEAR (optional).
3. Write new EEPROM data to EEDR (optional).
4. Write a logical one to the EEMPE bit while writing a zero to EEPE in EECR.
5. Within four clock cycles after setting EEMPE, write a logical one to EEPE.
Caution:
An interrupt between step 4 and step 5 will make the write cycle fail, since the EEPROM Master
Write Enable will time-out. If an interrupt routine accessing the EEPROM is interrupting another
EEPROM access, the EEAR or EEDR Register will be modified, causing the interrupted
EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared during all
the steps to avoid these problems.
When the write access time has elapsed, the EEPE bit is cleared by hardware. The user soft-
ware can poll this bit and wait for a zero before writing the next byte. When EEPE has been set,
the CPU is halted for two cycles before the next instruction is executed.
Caution:
A BOD reset during EEPROM write will invalidate the result of the ongoing operation.
• Bit 0 – EERE: EEPROM Read enable
The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct
address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the
EEPROM read. The EEPROM read access takes one instruction, and the requested data is
available immediately. When the EEPROM is read, the CPU is halted for four cycles before the
next instruction is executed.
The user should poll the EEPE bit before starting the read operation. If a write operation is in
progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.
The calibrated Oscillator is used to time the EEPROM accesses and the programming time will
therefore depend on the calibrated oscillator frequency.
time for EEPROM access from the CPU.
Table 8-2.
The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (for example by disabling inter-
rupts globally) so that no interrupts will occur during execution of these functions. The examples
also assume that no Flash Boot Loader is present in the software. If such code is present, the
EEPROM write function must also wait for any ongoing SPM command to finish.
Symbol
EEPROM write
(from CPU)
EEPROM programming time.
Number of calibrated RC
oscillator cycles
27200
Table 8-2
Typical programming time,
lists the typical programming
f
OSC
3.4ms
= 8MHz
8042D–AVR–10/11

Related parts for ATmega16HVB