ATmega325 Atmel Corporation, ATmega325 Datasheet - Page 13

no-image

ATmega325

Manufacturer Part Number
ATmega325
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega325

Flash (kbytes)
32 Kbytes
Pin Count
64
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
54
Ext Interrupts
17
Usb Speed
No
Usb Interface
No
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
2
Eeprom (bytes)
1024
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega325-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega325-16AI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega325-16AU
Manufacturer:
ATMEL
Quantity:
231
Part Number:
ATmega325-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega325-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega325-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega3250-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega3250-16AI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega3250-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega3250-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega3250P-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
7.5
7.5.1
2570N–AVR–05/11
General Purpose Register File
The X-register, Y-register, and Z-register
• Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:
Figure 7-2 on page 13
CPU.
Figure 7-2.
Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.
As shown in
mapping them directly into the first 32 locations of the user Data Space. Although not being
physically implemented as SRAM locations, this memory organization provides great flexibility in
access of the registers, as the X-, Y- and Z-pointer registers can be set to index any register in
the file.
The registers R26..R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in
One 8-bit output operand and one 8-bit result input
Two 8-bit output operands and one 8-bit result input
Two 8-bit output operands and one 16-bit result input
One 16-bit output operand and one 16-bit result input
Registers
Purpose
Working
General
Figure 7-2 on page
AVR CPU General Purpose Working Registers
shows the structure of the 32 general purpose working registers in the
7
13, each register is also assigned a data memory address,
R13
R14
R15
R16
R17
R26
R27
R28
R29
R30
R31
R0
R1
R2
ATmega325/3250/645/6450
0
Addr.
0x0D
0x0E
0x0F
0x1A
0x1B
0x1C
0x1D
0x1E
0x1F
0x00
0x01
0x02
0x10
0x11
Figure 7-3 on page
X-register High Byte
Y-register High Byte
Z-register High Byte
X-register Low Byte
Y-register Low Byte
Z-register Low Byte
14.
13

Related parts for ATmega325