ATmega325 Atmel Corporation, ATmega325 Datasheet - Page 94

no-image

ATmega325

Manufacturer Part Number
ATmega325
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega325

Flash (kbytes)
32 Kbytes
Pin Count
64
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
54
Ext Interrupts
17
Usb Speed
No
Usb Interface
No
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
2
Eeprom (bytes)
1024
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega325-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega325-16AI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega325-16AU
Manufacturer:
ATMEL
Quantity:
231
Part Number:
ATmega325-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega325-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega325-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega3250-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega3250-16AI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega3250-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega3250-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega3250P-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
2570N–AVR–05/11
Figure 15-7. Phase Correct PWM Mode, Timing Diagram
The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.
In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC0A pin. Setting the COM0A1:0 bits to two will produce a non-inverted PWM. An inverted
PWM output can be generated by setting the COM0A1:0 to three (See
The actual OC0A value will only be visible on the port pin if the data direction for the port pin is
set as output. The PWM waveform is generated by clearing (or setting) the OC0A Register at the
compare match between OCR0A and TCNT0 when the counter increments, and setting (or
clearing) the OC0A Register at compare match between OCR0A and TCNT0 when the counter
decrements. The PWM frequency for the output when using phase correct PWM can be calcu-
lated by the following equation:
The N variable represents the prescale factor (1, 8, 64, 256, or 1024).
The extreme values for the OCR0A Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR0A is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.
At the very start of period 2 in
there is no Compare Match. The point of this transition is to guarantee symmetry around BOT-
TOM. There are two cases that give a transition without Compare Match.
OCR0A changes its value from MAX, like in
OCn pin value is the same as the result of a down-counting Compare Match. To ensure
symmetry around BOTTOM the OCn value at MAX must correspond to the result of an up-
counting Compare Match.
TCNTn
OCn
OCn
Period
1
Figure 15-7
f
OCnxPCPWM
OCn has a transition from high to low even though
2
ATmega325/3250/645/6450
Figure
=
----------------- -
N 510
f
clk_I/O
15-7. When the OCR0A value is MAX the
3
Table 15-5 on page
OCnx Interrupt Flag Set
OCRnx Update
TOVn Interrupt Flag Set
(COMnx1:0 = 2)
(COMnx1:0 = 3)
98).
94

Related parts for ATmega325