ATmega32U4 Atmel Corporation, ATmega32U4 Datasheet - Page 178

no-image

ATmega32U4

Manufacturer Part Number
ATmega32U4
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega32U4

Flash (kbytes)
32 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
14
Hardware Qtouch Acquisition
No
Max I/o Pins
26
Ext Interrupts
13
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
12
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
3.3
Eeprom (bytes)
1024
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
12
Input Capture Channels
2
Pwm Channels
8
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega32U4-16AU
Manufacturer:
MAXIM
Quantity:
1 000
Part Number:
ATmega32U4-AU
Manufacturer:
FREESCALE
Quantity:
125
Part Number:
ATmega32U4-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32U4-AU
Manufacturer:
MICROCHIP
Quantity:
200
Part Number:
ATmega32U4-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32U4-MUR
Manufacturer:
UCC
Quantity:
1 001
Part Number:
ATmega32U4RC-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32U4RC-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32U4RC-MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
7766F–AVR–11/10
communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and
Slave prepare the data to be sent in their respective shift Registers, and the Master generates
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In
– Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS, line.
When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the Buffer Register for later use.
When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long
as the SS pin is driven high. In this state, software may update the contents of the SPI Data
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin
until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission
Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt
is requested. The Slave may continue to place new data to be sent into SPDR before reading
the incoming data. The last incoming byte will be kept in the Buffer Register for later use.
Figure 17-2. SPI Master-slave Interconnection
The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before
the entire shift cycle is completed. When receiving data, however, a received character must be
read from the SPI Data Register before the next character has been completely shifted in. Oth-
erwise, the first byte is lost.
In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the frequency of the SPI clock should never exceed f
ATmega16/32U4
SHIFT
ENABLE
osc
/4.
178

Related parts for ATmega32U4