ATmega32U4 Atmel Corporation, ATmega32U4 Datasheet - Page 305

no-image

ATmega32U4

Manufacturer Part Number
ATmega32U4
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega32U4

Flash (kbytes)
32 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
14
Hardware Qtouch Acquisition
No
Max I/o Pins
26
Ext Interrupts
13
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
12
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
3.3
Eeprom (bytes)
1024
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
12
Input Capture Channels
2
Pwm Channels
8
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega32U4-16AU
Manufacturer:
MAXIM
Quantity:
1 000
Part Number:
ATmega32U4-AU
Manufacturer:
FREESCALE
Quantity:
125
Part Number:
ATmega32U4-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32U4-AU
Manufacturer:
MICROCHIP
Quantity:
200
Part Number:
ATmega32U4-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32U4-MUR
Manufacturer:
UCC
Quantity:
1 001
Part Number:
ATmega32U4RC-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32U4RC-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32U4RC-MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
24.8
7766F–AVR–11/10
ADC Conversion Result
Figure 24-14. Differential Non-linearity (DNL)
After the conversion is complete (ADIF is high), the conversion result can be found in the ADC
Result Registers (ADCL, ADCH).
For single ended conversion, the result is:
where V
Table 24-3 on page 307
0x3FF represents the selected reference voltage minus one LSB.
If differential channels are used, the result is:
where V
GAIN the selected gain factor and V
in two’s complement form, from 0x200 (-512d) through 0x1FF (+511d). Note that if the user
wants to perform a quick polarity check of the result, it is sufficient to read the MSB of the result
(ADC9 in ADCH). If the bit is one, the result is negative, and if this bit is zero, the result is posi-
tive.
Table 82 shows the resulting output codes if the differential input channel pair (ADCn - ADCm) is
selected with a reference voltage of V
• Quantization Error: Due to the quantization of the input voltage into a finite number of codes,
• Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition compared to
a range of input voltages (1 LSB wide) will code to the same value. Always ± 0.5 LSB.
an ideal transition for any code. This is the compound effect of offset, gain error, differential
error, non-linearity, and quantization error. Ideal value: ± 0.5 LSB.
Figure 24-15
IN
POS
is the voltage on the selected input pin and V
is the voltage on the positive input pin, V
Output Code
shows the decoding of the differential input range.
0x000
0x3FF
and
0
Table 24-4 on page
1 LSB
ADC
REF
REF
ADC
=
the selected voltage reference. The result is presented
.
(
----------------------------------------------------------------------- -
V
=
POS
V
--------------------------
IN
V
REF
308). 0x000 represents analog ground, and
V
1023
NEG
NEG
V
REF
REF
) GAIN 512
the voltage on the negative input pin,
the selected voltage reference (see
ATmega16/32U4
V
REF
Input Voltage
305

Related parts for ATmega32U4