AM29F002NB AMD [Advanced Micro Devices], AM29F002NB Datasheet - Page 18

no-image

AM29F002NB

Manufacturer Part Number
AM29F002NB
Description
2 Megabit (256 K x 8-Bit) CMOS 5.0 Volt-only Boot Sector Flash Memory
Manufacturer
AMD [Advanced Micro Devices]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AM29F002NB-55PC
Manufacturer:
AMD
Quantity:
20 000
Part Number:
AM29F002NBB-120JC
Manufacturer:
AMD
Quantity:
4 530
Part Number:
AM29F002NBB-55JF
Manufacturer:
SPANSION
Quantity:
314
Part Number:
AM29F002NBB-70JC
Manufacturer:
AMD
Quantity:
3 365
Part Number:
AM29F002NBB-90EF
Manufacturer:
SPANSION
Quantity:
215
Part Number:
AM29F002NBT-120JC
Manufacturer:
AMD
Quantity:
9
Company:
Part Number:
AM29F002NBT-70PI
Quantity:
96
Part Number:
AM29F002NBT-90ED
Manufacturer:
AMD
Quantity:
20 000
Part Number:
AM29F002NBT-90JC
Manufacturer:
AMD
Quantity:
2 699
WRITE OPERATION STATUS
The device provides several bits to determine the
status of a write operation: DQ2, DQ3, DQ5, DQ6, and
DQ7. Table 6 and the following subsections describe
the functions of these bits. DQ7 and DQ6 each offer a
method for determining whether a program or erase
operation is complete or in progress. These three bits
are discussed first.
DQ7: Data# Polling
The Data# Polling bit, DQ7, indicates to the host
system whether an Embedded Algorithm is in progress
or completed, or whether the device is in Erase Sus-
pend. Data# Polling is valid after the rising edge of the
final WE# pulse in the program or erase command
sequence.
During the Embedded Program algorithm, the device
outputs on DQ7 the complement of the datum pro-
grammed to DQ7. This DQ7 status also applies to
programming during Erase Suspend. When the
Embedded Program algorithm is complete, the device
outputs the datum programmed to DQ7. The system
must provide the program address to read valid status
information on DQ7. If a program address falls within a
protected sector, Data# Polling on DQ7 is active for
approximately 2 µs, then the device returns to reading
array data.
During the Embedded Erase algorithm, Data# Polling
produces a “0” on DQ7. When the Embedded Erase
algorithm is complete, or if the device enters the Erase
Suspend mode, Data# Polling produces a “1” on DQ7.
This is analogous to the complement/true datum output
described for the Embedded Program algorithm: the
erase function changes all the bits in a sector to “1”;
prior to this, the device outputs the “complement,” or
“0.” The system must provide an address within any of
the sectors selected for erasure to read valid status
information on DQ7.
After an erase command sequence is written, if all
sectors selected for erasing are protected, Data#
Polling on DQ7 is active for approximately 100 µs, then
the device returns to reading array data. If not all
selected sectors are protected, the Embedded Erase
algorithm erases the unprotected sectors, and ignores
the selected sectors that are protected.
When the system detects DQ7 has changed from the
complement to true data, it can read valid data at DQ7–
DQ0 on the following read cycles. This is because DQ7
may change asynchronously with DQ0–DQ6 while
Output Enable (OE#) is asserted low. The Data#
Polling Timings (During Embedded Algorithms) figure
in the “AC Characteristics” section illustrates this.
November 28, 2000
Am29F002B/Am29F002NB
Table 6 shows the outputs for Data# Polling on DQ7.
Figure 4 shows the Data# Polling algorithm.
Notes:
1. VA = Valid address for programming. During a sector
2. DQ7 should be rechecked even if DQ5 = “1” because
No
erase operation, a valid address is an address within any
sector selected for erasure. During chip erase, a valid
address is any non-protected sector address.
DQ7 may change simultaneously with DQ5.
Figure 4. Data# Polling Algorithm
Read DQ7–DQ0
Read DQ7–DQ0
DQ7 = Data?
DQ7 = Data?
Addr = VA
Addr = VA
DQ5 = 1?
START
FAIL
No
Yes
No
Yes
Yes
PASS
17

Related parts for AM29F002NB