MC9S12P32MFT Freescale Semiconductor, MC9S12P32MFT Datasheet - Page 181

no-image

MC9S12P32MFT

Manufacturer Part Number
MC9S12P32MFT
Description
16-bit Microcontrollers - MCU 16 BIT 32K FLASH
Manufacturer
Freescale Semiconductor
Datasheet

Specifications of MC9S12P32MFT

Rohs
yes
Core
S12
Processor Series
MC9S12P
Data Bus Width
16 bit
Maximum Clock Frequency
32 MHz
Program Memory Size
32 KB
Data Ram Size
4 KB
On-chip Adc
Yes
Operating Supply Voltage
3.13 V to 5.5 V
Operating Temperature Range
- 40 C to + 125 C
Package / Case
QFN-48
Mounting Style
SMD/SMT
is disabled and the transition to Final State can only generate a breakpoint request. In this case or upon
completion of a tracing session when tracing is enabled, the ARM bit in the DBGC1 register is cleared,
returning the module to the disarmed state0. If tracing is enabled a breakpoint request can occur at the end
of the tracing session. If neither tracing nor breakpoints are enabled then when the final state is reached it
returns automatically to state0 and the debug module is disarmed.
6.4.5
The trace buffer is a 64 lines deep by 20-bits wide RAM array. The DBG module stores trace information
in the RAM array in a circular buffer format. The system accesses the RAM array through a register
window (DBGTBH:DBGTBL) using 16-bit wide word accesses. After each complete 20-bit trace buffer
line is read, an internal pointer into the RAM increments so that the next read receives fresh information.
Data is stored in the format shown in
DBGCNT is incremented. Tracing of CPU activity is disabled when the BDM is active. Reading the trace
buffer whilst the DBG is armed returns invalid data and the trace buffer pointer is not incremented.
6.4.5.1
Using the TALIGN bit (see 6.3.2.3) it is possible to align the trigger with the end or the beginning of a
tracing session.
If end alignment is selected, tracing begins when the ARM bit in DBGC1 is set and State1 is entered; the
transition to Final State signals the end of the tracing session. Tracing with Begin-Trigger starts at the
opcode of the trigger. Using end alignment or when the tracing is initiated by writing to the TRIG bit whilst
configured for begin alignment, tracing starts in the second cycle after the DBGC1 write cycle.
6.4.5.1.1
Storing with begin alignment, data is not stored in the Trace Buffer until the Final State is entered. Once
the trigger condition is met the DBG module remains armed until 64 lines are stored in the Trace Buffer.
If the trigger is at the address of the change-of-flow instruction the change of flow associated with the
trigger is stored in the Trace Buffer. Using begin alignment together with tagging, if the tagged instruction
is about to be executed then the trace is started. Upon completion of the tracing session the breakpoint is
generated, thus the breakpoint does not occur at the tagged instruction boundary.
6.4.5.1.2
Storing with end alignment, data is stored in the Trace Buffer until the Final State is entered, at which point
the DBG module becomes disarmed and no more data is stored. If the trigger is at the address of a change
of flow instruction, the trigger event is not stored in the Trace Buffer. If all trace buffer lines have been
used before a trigger event occurrs then the trace continues at the first line, overwriting the oldest entries.
6.4.5.2
Four trace modes are available. The mode is selected using the TRCMOD bits in the DBGTCR register.
Tracing is enabled using the TSOURCE bit in the DBGTCR register. The modes are described in the
following subsections.
Freescale Semiconductor
Trace Buffer Operation
Trace Trigger Alignment
Trace Modes
Storing with Begin Trigger Alignment
Storing with End Trigger Alignment
S12P-Family Reference Manual, Rev. 1.13
Table 6-37
and
Table
6-40. After each store the counter register
S12S Debug Module (S12SDBGV2)
181

Related parts for MC9S12P32MFT