PIC24HJ64GP206-I/PT Microchip Technology, PIC24HJ64GP206-I/PT Datasheet - Page 128

IC PIC MCU FLASH 32KX16 64TQFP

PIC24HJ64GP206-I/PT

Manufacturer Part Number
PIC24HJ64GP206-I/PT
Description
IC PIC MCU FLASH 32KX16 64TQFP
Manufacturer
Microchip Technology
Series
PIC® 24Hr

Specifications of PIC24HJ64GP206-I/PT

Program Memory Type
FLASH
Program Memory Size
64KB (22K x 24)
Package / Case
64-TFQFP
Core Processor
PIC
Core Size
16-Bit
Speed
40 MIPs
Connectivity
I²C, IrDA, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number Of I /o
53
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 18x10b/12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC24HJ
Core
PIC
Data Bus Width
16 bit
Data Ram Size
8 KB
Interface Type
CAN, I2C, SPI, UART
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
53
Number Of Timers
13
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005
Minimum Operating Temperature
- 40 C
On-chip Adc
12 bit, 18 Channel
Controller Family/series
PIC24
No. Of I/o's
53
Ram Memory Size
8KB
Cpu Speed
40MIPS
No. Of Timers
13
Embedded Interface Type
I2C, SPI, UART
Rohs Compliant
Yes
Height
1 mm
Length
10 mm
Supply Voltage (max)
3.6 V
Supply Voltage (min)
3 V
Width
10 mm
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
876-1004 - PIC24 BREAKOUT BOARDDM300024 - KIT DEMO DSPICDEM 1.1MA240012 - MODULE PLUG-IN PIC24H 100QFPDV164033 - KIT START EXPLORER 16 MPLAB ICD2DM300019 - BOARD DEMO DSPICDEM 80L STARTERDM240001 - BOARD DEMO PIC24/DSPIC33/PIC32AC164327 - MODULE SKT FOR 64TQFP
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC24HJ64GP206-I/PT
Manufacturer:
Microchi
Quantity:
297
Part Number:
PIC24HJ64GP206-I/PT
Manufacturer:
MICROCHIP
Quantity:
12 000
Part Number:
PIC24HJ64GP206-I/PT
Manufacturer:
MICROCHIP
Quantity:
642
Part Number:
PIC24HJ64GP206-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC24HJ64GP206-I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
PIC24HJ64GP206-I/PT
Quantity:
29
PIC24HJXXXGPX06/X08/X10
8.2
Applications are free to switch between any of the four
clock sources (Primary, LP, FRC and LPRC) under
software control at any time. To limit the possible side
effects
PIC24HJXXXGPX06/X08/X10 devices have a safe-
guard lock built into the switch process.
8.2.1
To enable clock switching, the FCKSM1 Configuration
bit in the Configuration register must be programmed to
‘0’. (Refer to Section 20.1 “Configuration Bits” for
further details.) If the FCKSM1 Configuration bit is
unprogrammed (‘1’), the clock switching function and
Fail-Safe Clock Monitor function are disabled. This is
the default setting.
The NOSC control bits (OSCCON<10:8>) do not
control the clock selection when clock switching is
disabled. However, the COSC bits (OSCCON<14:12>)
reflect the clock source selected by the FNOSC
Configuration bits.
The OSWEN control bit (OSCCON<0>) has no effect
when clock switching is disabled. It is held at ‘0’ at all
times.
8.2.2
At a minimum, performing a clock switch requires this
basic sequence:
1.
2.
3.
4.
5.
DS70175F-page 126
Note:
If
(OSCCON<14:12>) to determine the current
oscillator source.
Perform the unlock sequence to allow a write to
the OSCCON register high byte.
Write the appropriate value to the NOSC control
bits (OSCCON<10:8>) for the new oscillator
source.
Perform the unlock sequence to allow a write to
the OSCCON register low byte.
Set the OSWEN bit to initiate the oscillator
switch.
that
Clock Switching Operation
desired,
Primary Oscillator mode has three different
submodes (XT, HS and EC) which are
determined by the POSCMD<1:0> Config-
uration bits. While an application can
switch to and from Primary Oscillator
mode in software, it cannot switch
between the different primary submodes
without reprogramming the device.
ENABLING CLOCK SWITCHING
OSCILLATOR SWITCHING
SEQUENCE
could
read
result
the
from
COSC
this
flexibility,
bits
Once the basic sequence is completed, the system
clock hardware responds automatically as follows:
1.
2.
3.
4.
5.
6.
8.3
The Fail-Safe Clock Monitor (FSCM) allows the device
to continue to operate even in the event of an oscillator
failure. The FSCM function is enabled by programming.
If the FSCM function is enabled, the LPRC internal
oscillator runs at all times (except during Sleep mode)
and is not subject to control by the Watchdog Timer.
If an oscillator failure occurs, the FSCM generates a
clock failure trap event and switches the system clock
over to the FRC oscillator. Then the application
program can either attempt to restart the oscillator or
execute a controlled shutdown. The trap can be treated
as a warm Reset by simply loading the Reset address
into the oscillator fail trap vector.
If the PLL multiplier is used to scale the system clock,
the internal FRC is also multiplied by the same factor
on clock failure. Essentially, the device switches to
FRC with PLL on a clock failure.
Note 1: The processor continues to execute code
The clock switching hardware compares the
COSC status bits with the new value of the
NOSC control bits. If they are the same, then the
clock switch is a redundant operation. In this
case, the OSWEN bit is cleared automatically
and the clock switch is aborted.
If a valid clock switch has been initiated, the
LOCK
(OSCCON<3>) status bits are cleared.
The new oscillator is turned on by the hardware
if it is not currently running. If a crystal oscillator
must be turned on, the hardware waits until the
Oscillator Start-up Timer (OST) expires. If the
new source is using the PLL, the hardware waits
until a PLL lock is detected (LOCK = 1).
The hardware waits for 10 clock cycles from the
new clock source and then performs the clock
switch.
The hardware clears the OSWEN bit to indicate a
successful clock transition. In addition, the NOSC
bit values are transferred to the COSC status bits.
The old clock source is turned off at this time,
with the exception of LPRC (if WDT or FSCM
are enabled) or LP (if LPOSCEN remains set).
2: Direct clock switches between any primary
Fail-Safe Clock Monitor (FSCM)
throughout the clock switching sequence.
Timing sensitive code should not be
executed during this time.
oscillator mode with PLL and FRCPLL
mode are not permitted. This applies to
clock switches in either direction. In these
instances, the application must switch to
FRC mode as a transition clock source
between the two PLL modes.
(OSCCON<5>)
© 2007 Microchip Technology Inc.
and
the
CF

Related parts for PIC24HJ64GP206-I/PT