DSPIC33FJ128GP708-I/PT

Manufacturer Part NumberDSPIC33FJ128GP708-I/PT
DescriptionIC DSPIC MCU/DSP 128K 80TQFP
ManufacturerMicrochip Technology
SeriesdsPIC™ 33F
DSPIC33FJ128GP708-I/PT datasheets
 

Specifications of DSPIC33FJ128GP708-I/PT

Program Memory TypeFLASHProgram Memory Size128KB (128K x 8)
Package / Case80-TFQFPCore ProcessordsPIC
Core Size16-BitSpeed40 MIPs
ConnectivityCAN, I²C, IrDA, LIN, SPI, UART/USARTPeripheralsAC'97, Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT
Number Of I /o69Ram Size16K x 8
Voltage - Supply (vcc/vdd)3 V ~ 3.6 VData ConvertersA/D 24x10b/12b
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C
ProductDSCsData Bus Width16 bit
Processor SeriesDSPIC33FCoredsPIC
Maximum Clock Frequency40 MHzNumber Of Programmable I/os69
Data Ram Size16 KBMaximum Operating Temperature+ 85 C
Mounting StyleSMD/SMT3rd Party Development Tools52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By SupplierPG164130, DV164035, DV244005, DV164005, PG164120, DM240001, DV164033Minimum Operating Temperature- 40 C
Lead Free Status / RoHS StatusLead free / RoHS CompliantFor Use With876-1001 - DSPIC33 BREAKOUT BOARDDM300024 - KIT DEMO DSPICDEM 1.1DV164033 - KIT START EXPLORER 16 MPLAB ICD2MA330012 - MODULE DSPIC33 100P TO 84QFPMA330011 - MODULE DSPIC33 100P TO 100QFPDM300019 - BOARD DEMO DSPICDEM 80L STARTERDM240001 - BOARD DEMO PIC24/DSPIC33/PIC32AC164328 - MODULE SKT FOR 80TQFPDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Eeprom Size-  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Page 21
22
Page 22
23
Page 23
24
Page 24
25
Page 25
26
Page 26
27
Page 27
28
Page 28
29
Page 29
30
Page 30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
Page 24/90

Download datasheet (3Mb)Embed
PrevNext
dsPIC33F
7.0
DEVICE POWER MANAGEMENT
Power
management
services
dsPIC33F devices include:
• Real-Time Clock Source Switching
• Power-Saving Modes
7.1
Real-Time Clock Source Switching
Configuration bits determine the clock source upon
Power-on Reset (POR) and Brown-out Reset (BOR).
Thereafter, the clock source can be changed between
permissible clock sources. The OSCCON register
controls the clock switching and reflects system clock
related status bits. To reduce power consumption, the
user can switch to a slower clock source.
7.2
Power-Saving Modes
The dsPIC33F devices have two reduced power
modes that can be entered through execution of the
PWRSAV instruction.
• Sleep Mode: The CPU, system clock source and
any peripherals that operate on the system clock
source are disabled. This is the lowest power
mode of the device.
• Idle Mode: The CPU is disabled but the system
clock source continues to operate. Peripherals
continue to operate but can optionally be disabled.
• Doze Mode: The CPU clock is temporarily slowed
down relative to the peripheral clock by a
user-selectable factor.
These modes provide an effective way to reduce power
consumption during periods when the CPU is not in use.
7.2.1
SLEEP MODE
When the device enters Sleep mode:
• System clock source is shut down. If an on-chip
oscillator is used, it is turned off.
• Device current consumption is at minimum
provided that no I/O pin is sourcing current.
• Fail-Safe Clock Monitor (FSCM) does not operate
during Sleep mode because the system clock
source is disabled.
• LPRC clock continues to run in Sleep mode if the
WDT is enabled.
• BOR circuit, if enabled, remains operative during
Sleep mode
• WDT, if enabled, is automatically cleared prior to
entering Sleep mode.
• Some peripherals may continue to operate in
Sleep mode. These peripherals include I/O pins
that detect a change in the input signal, or
peripherals that use an external clock input. Any
peripheral that is operating on the system clock
source is disabled in Sleep mode.
DS70155C-page 22
The processor exits (wakes up) from Sleep on one of
these events:
provided
by
the
• Any interrupt source that is individually enabled
• Any form of device Reset
• A WDT time-out
7.2.2
When the device enters Idle mode:
• CPU stops executing instructions
• WDT is automatically cleared
• System clock source remains active
• Peripheral modules, by default, continue to
operate normally from the system clock source
• Peripherals, optionally, can be shut down in Idle
mode using their ‘stop-in-idle’ control bit.
• If the WDT or FSCM is enabled, the LPRC also
remains active
The processor wakes from Idle mode on these events:
• Any interrupt that is individually enabled
• Any source of device Reset
• A WDT time-out
Upon wake-up from Idle, the clock is re-applied to the
CPU and instruction execution begins immediately
starting with the instruction following the PWRSAV
instruction, or the first instruction in the Interrupt
Service Routine (ISR).
7.2.3
The Doze mode provides the user software the ability
to temporarily reduce the processor instruction cycle
frequency relative to the peripheral frequency. Clock
frequency ratios of 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64
and 1:128 are supported.
For example, suppose the device is operating at
20 MIPS and the CAN module has been configured for
500 kbps bit rate based on this device operating speed.
If the device is now placed in Doze mode with a clock
frequency ratio of 1:4, the CAN module will continue to
communicate at the required bit rate of 500 kbps, but
the CPU now starts executing instructions at a
frequency of 5 MIPS.
This feature further reduces the power consumption
during periods where relatively less CPU activity is
required.
When the device is operating in Doze mode, the
hardware
synchronization between peripheral events and SFR
accesses by the CPU.
Preliminary
IDLE MODE
DOZE MODE
ensures
that
there
is
no
loss
© 2005 Microchip Technology Inc.
of