DSPIC33FJ12MC202-I/ML Microchip Technology, DSPIC33FJ12MC202-I/ML Datasheet - Page 31

IC DSPIC MCU/DSP 12K 28QFN

DSPIC33FJ12MC202-I/ML

Manufacturer Part Number
DSPIC33FJ12MC202-I/ML
Description
IC DSPIC MCU/DSP 12K 28QFN
Manufacturer
Microchip Technology
Series
dsPIC™ 33Fr

Specifications of DSPIC33FJ12MC202-I/ML

Core Processor
dsPIC
Core Size
16-Bit
Speed
40 MIPs
Connectivity
I²C, IrDA, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number Of I /o
21
Program Memory Size
12KB (12K x 8)
Program Memory Type
FLASH
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 6x10b/12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-VQFN Exposed Pad, 28-HVQFN, 28-SQFN, 28-DHVQFN
Core Frequency
40MHz
Core Supply Voltage
2.75V
Embedded Interface Type
I2C, JTAG, SPI, UART
No. Of I/o's
21
Flash Memory Size
12KB
Supply Voltage Range
3V To 3.6V
Package
28QFN EP
Device Core
dsPIC
Family Name
dSPIC33
Maximum Speed
40 MHz
Operating Supply Voltage
3.3 V
Data Bus Width
16 Bit
Number Of Programmable I/os
21
Interface Type
I2C/SPI/UART
On-chip Adc
6-chx10-bit|6-chx12-bit
Number Of Timers
3
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC164336 - MODULE SOCKET FOR PM3 28/44QFNDM240001 - BOARD DEMO PIC24/DSPIC33/PIC32
Eeprom Size
-
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant
4.2
The dsPIC33FJ12MC201/202 CPU has a separate 16-
bit-wide data memory space. The data space is
accessed using separate Address Generation Units
(AGUs) for read and write operations. The data
memory maps is shown in Figure 4-3.
All Effective Addresses (EAs) in the data memory space
are 16 bits wide and point to bytes within the data space.
This arrangement gives a data space address range of
64 Kbytes or 32K words. The lower half of the data
memory space (that is, when EA<15> = 0) is used for
implemented memory addresses, while the upper half
(EA<15> = 1) is reserved for the Program Space
Visibility area (see Section 4.6.3 “Reading Data from
Program Memory Using Program Space Visibility”).
Microchip dsPIC33FJ12MC201/202 devices imple-
ment up to 30 Kbytes of data memory. Should an EA
point to a location outside of this area, an all-zero word
or byte will be returned.
4.2.1
The data memory space is organized in byte
addressable, 16-bit wide blocks. Data is aligned in data
memory and registers as 16-bit words, but all data
space EAs resolve to bytes. The Least Significant
Bytes (LSBs) of each word have even addresses, while
the Most Significant Bytes (MSBs) have odd
addresses.
4.2.2
To maintain backward compatibility with PIC
devices and improve data space memory usage
efficiency, the dsPIC33FJ12MC201/202 instruction set
supports both word and byte operations. As a
consequence of byte accessibility, all effective address
calculations are internally scaled to step through word-
aligned memory. For example, the core recognizes that
Post-Modified Register Indirect Addressing mode
[Ws++] will result in a value of Ws + 1 for byte
operations and Ws + 2 for word operations.
Data byte reads will read the complete word that
contains the byte, using the LSB of any EA to
determine which byte to select. The selected byte is
placed onto the LSB of the data path. That is, data
memory and registers are organized as two parallel
byte-wide entities with shared (word) address decoding
but separate write lines. Data byte writes only write to
the corresponding side of the array or register that
matches the byte address.
© 2009 Microchip Technology Inc.
Data Address Space
DATA SPACE WIDTH
DATA MEMORY ORGANIZATION
AND ALIGNMENT
®
MCU
Preliminary
dsPIC33FJ12MC201/202
All word accesses must be aligned to an even address.
Misaligned word data fetches are not supported, so
care must be taken when mixing byte and word
operations, or translating from 8-bit MCU code. If a
misaligned read or write is attempted, an address error
trap is generated. If the error occurred on a read, the
instruction in progress is completed. If the error
occurred on a write, the instruction is executed but the
write does not occur. In either case, a trap is then exe-
cuted, allowing the system and/or user application to
examine the machine state prior to execution of the
address Fault.
All byte loads into any W register are loaded into the
LSB. The MSB is not modified.
A sign-extend instruction (SE) is provided to allow user
applications to translate 8-bit signed data to 16-bit
signed values. Alternately, for 16-bit unsigned data,
user applications can clear the MSB of any W register
by executing a zero-extend (ZE) instruction on the
appropriate address.
4.2.3
The first 2 Kbytes of the Near Data Space, from 0x0000
to 0x07FF, is primarily occupied by Special Function
Registers
dsPIC33FJ12MC201/202 core and peripheral modules
for controlling the operation of the device.
SFRs are distributed among the modules that they
control, and are generally grouped together by module.
Much of the SFR space contains unused addresses;
these are read as ‘0’.
4.2.4
The 8-Kbyte area between 0x0000 and 0x1FFF is
referred to as the near data space. Locations in this
space are directly addressable via a 13-bit absolute
address field within all memory direct instructions.
Additionally, the whole data space is addressable using
MOV class of instructions, which support Memory Direct
Addressing mode with a 16-bit address field, or by
using Indirect Addressing mode with a working register
as an address pointer.
Note:
SFR SPACE
The actual set of peripheral features and
interrupts varies by the device. Refer to
the corresponding device tables and pin-
out diagrams for device-specific
information.
NEAR DATA SPACE
(SFRs).
These
are
DS70265D-page 29
used
by
the

Related parts for DSPIC33FJ12MC202-I/ML