CY8C3244LTI-123 Cypress Semiconductor Corp, CY8C3244LTI-123 Datasheet - Page 5

no-image

CY8C3244LTI-123

Manufacturer Part Number
CY8C3244LTI-123
Description
CY8C3244LTI-123
Manufacturer
Cypress Semiconductor Corp
Series
PSOC™ 3 CY8C32xxr

Specifications of CY8C3244LTI-123

Core Processor
8051
Core Size
8-Bit
Speed
50MHz
Connectivity
EBI/EMI, I²C, LIN, SPI, UART/USART
Peripherals
CapSense, DMA, POR, PWM, WDT
Number Of I /o
25
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
1.71 V ~ 5.5 V
Data Converters
A/D 2x12b, D/A 1x8b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
*
Operating Temperature (min)
-40C
Operating Temperature (max)
85C
Technology
CMOS
Processing Unit
Microcontroller
Operating Supply Voltage (min)
1.8V
Operating Supply Voltage (typ)
2.5/3.3/5V
Operating Supply Voltage (max)
5.5V
Package Type
QFN EP
Screening Level
Industrial
Pin Count
48
Mounting
Surface Mount
Rad Hardened
No
Processor Series
CY8C32
Core
8051
Data Bus Width
32 bit
Data Ram Size
2 KB
Interface Type
I2C, SPI, UART, USB
Maximum Clock Frequency
50 MHz
Number Of Programmable I/os
29
Number Of Timers
4
Operating Supply Voltage
1.71 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Controller Family/series
(8051) PSOC 3
No. Of I/o's
25
Eeprom Memory Size
0.5KB
Ram Memory Size
2KB
Cpu Speed
50MHz
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
CY8C3244LTI-123
Manufacturer:
CY
Quantity:
1 000
This enables the device to be powered directly from a single
battery or solar cell. In addition, you can use the boost converter
to generate other voltages required by the device, such as a
3.3-V supply for LCD glass drive. The boost’s output is available
on the V
be powered from the PSoC.
PSoC supports a wide range of low-power modes. These include
a 200-nA hibernate mode with RAM retention and a 1-µA sleep
mode with RTC. In the second mode the optional 32.768-kHz
watch crystal runs continuously and maintains an accurate RTC.
Power to all major functional blocks, including the programmable
digital and analog peripherals, can be controlled independently
by firmware. This allows low-power background processing
when some peripherals are not in use. This, in turn, provides a
total device current of only 1.2 mA when the CPU is running at
6 MHz, or 0.8 mA running at 3 MHz.
The details of the PSoC power modes are covered in the
System”
PSoC uses JTAG (4-wire) or SWD (2-wire) interfaces for
programming, debug, and test. The 1-wire SWV may also be
used for “printf” style debugging. By combining SWD and SWV,
Note
Document Number: 001-56955 Rev. *J
6. Pins are Do Not Use (DNU) on devices without USB. The pin must be left floating.
BOOST
section on page 29 of this datasheet.
pin, allowing other devices in the application to
(Extref0, GPIO) P0[3]
(IDAC0, GPIO) P0[6]
(GPIO) P0[0]
(GPIO) P0[1]
(GPIO) P0[2]
(GPIO) P0[4]
(GPIO) P0[5]
(GPIO) P0[7]
(GPIO) P2[3]
(GPIO) P2[4]
(GPIO) P2[5]
(GPIO) P2[6]
(GPIO) P2[7]
(SIO ) P12[2]
(SIO ) P12[3]
Vddio0
Vddio2
Vboost
Vddd
Vccd
Vssd
Vssb
Vbat
Ind
Figure 2-1. 48-pin SSOP Part Pinout
10
12
15
18
19
21
23
11
13
14
16
17
20
22
24
5
8
1
2
3
4
6
7
9
“Power
Lines show
Vddio to I/O
supply
association
SSOP
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
you can implement a full debugging interface with just three pins.
Using these standard interfaces enables you to debug or
program the PSoC with a variety of hardware solutions from
Cypress or third party vendors. PSoC supports on-chip break
points and 4-KB instruction and data race memory for debug.
Details of the programming, test, and debugging interfaces are
discussed in the
section on page 59 of this datasheet.
2. Pinouts
The Vddio pin that supplies a particular set of pins is indicated
by the black lines drawn on the pinout diagrams in
through
support multiple interface voltage levels, eliminating the need for
off-chip level shifters. Each Vddio may sink up to 100 mA total to
its associated I/O pins. On the 68 pin and 100 pin devices each
set of Vddio associated pins may sink up to 100 mA. The 48-pin
device may sink up to 100 mA total for all Vddio0 plus Vddio2
associated I/O pins and 100 mA total for all Vddio1 plus Vddio3
associated I/O pins.
Vdda
Vssa
Vcca
P15[3] (GPIO, kHz XTAL: Xi)
P15[2] (GPIO, kHz XTAL: Xo)
P12[1] (SIO, I2C1: SDA)
P12[0] (SIO, I2C1: SCL)
Vddio3
P15[1] (GPIO, MHz XTAL: Xi)
P15[0] (GPIO, MHz XTAL: Xo)
Vccd
Vssd
Vddd
P15[7] (USBIO, D-, SW DCK)
P15[6] (USBIO, D+, SW DIO)
P1[7] (GPIO)
P1[6] (GPIO)
Vddio1
P1[5] (GPIO, nTRST)
P1[4] (GPIO, TDI)
P1[3] (GPIO, TDO, SW V)
P1[2] (GPIO, configurable XRES)
P1[1] (GPIO, TCK, SW DCK)
P1[0] (GPIO, TMS, SW DIO)
Figure
2-4. Using the Vddio pins, a single PSoC can
“Programming, Debug Interfaces, Resources”
PSoC
[6]
[6]
®
3: CY8C32 Family
Data Sheet
Page 5 of 119
Figure 2-1
[+] Feedback

Related parts for CY8C3244LTI-123