IRFB4410ZPBF International Rectifier, IRFB4410ZPBF Datasheet - Page 5

MOSFET N-CH 100V 97A TO-220AB

IRFB4410ZPBF

Manufacturer Part Number
IRFB4410ZPBF
Description
MOSFET N-CH 100V 97A TO-220AB
Manufacturer
International Rectifier
Series
HEXFET®r
Datasheet

Specifications of IRFB4410ZPBF

Fet Type
MOSFET N-Channel, Metal Oxide
Fet Feature
Logic Level Gate
Rds On (max) @ Id, Vgs
9 mOhm @ 58A, 10V
Drain To Source Voltage (vdss)
100V
Current - Continuous Drain (id) @ 25° C
97A
Vgs(th) (max) @ Id
4V @ 150µA
Gate Charge (qg) @ Vgs
120nC @ 10V
Input Capacitance (ciss) @ Vds
4820pF @ 50V
Power - Max
230W
Mounting Type
Through Hole
Package / Case
TO-220-3 (Straight Leads)
Transistor Polarity
N-Channel
Drain-source Breakdown Voltage
100 V
Gate-source Breakdown Voltage
20 V
Continuous Drain Current
97 A
Power Dissipation
230 W
Mounting Style
Through Hole
Gate Charge Qg
83 nC
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
IRFB4410ZPBF
Manufacturer:
MITSUBISHI
Quantity:
129
Part Number:
IRFB4410ZPBF
Manufacturer:
IR
Quantity:
20 000
Part Number:
IRFB4410ZPBF
0
Company:
Part Number:
IRFB4410ZPBF
Quantity:
4 800
Company:
Part Number:
IRFB4410ZPBF
Quantity:
18 000
www.irf.com
Fig 15. Maximum Avalanche Energy vs. Temperature
150
100
50
0
25
0.001
100
0.01
0.1
10
Starting T J , Junction Temperature (°C)
0.1
1.0E-06
1
1E-006
1
50
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
0.10
D = 0.50
0.05
TOP
BOTTOM 1.0% Duty Cycle
I D = 58A
75
0.01
0.10
0.05
0.02
0.20
Duty Cycle = Single Pulse
100
Single Pulse
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1.0E-05
1E-005
125
Fig 14. Typical Avalanche Current vs.Pulsewidth
150
175
t 1 , Rectangular Pulse Duration (sec)
1.0E-04
0.0001
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
2. Safe operation in Avalanche is allowed as long asT
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. P
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
6. I
7. ∆T
tav (sec)
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
during avalanche).
25°C in Figure 14, 15).
t
D = Duty cycle in avalanche = t
Z
av
av =
thJC
D (ave)
= Allowable avalanche current.
τ
=
J
Average time in avalanche.
τ
(D, t
Allowable rise in junction temperature, not to exceed T
J
τ
1
Ci= τi/Ri
τ
1
= Average power dissipation per single avalanche pulse.
Ci
av
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆ Tj = 150°C and
Tstart =25°C (Single Pulse)
) = Transient thermal resistance, see Figures 13)
1.0E-03
i/Ri
jmax
R
0.001
1
R
1
. This is validated for every part type.
τ
P
2
R
τ
D (ave)
2
2
R
2
τ
C
= 1/2 ( 1.3·BV·I
I
τ
E
av
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
AS (AR)
= 2DT/ [1.3·BV·Z
av
Ri (°C/W)
1.0E-02
·f
0.237
0.413
0.01
= P
D (ave)
av
) = DT/ Z
·t
0.000178
0.003772
th
av
τi (sec)
]
jmax
thJC
jmax
1.0E-01
is not exceeded.
0.1
(assumed as
5

Related parts for IRFB4410ZPBF