AD9754ARU Analog Devices Inc, AD9754ARU Datasheet - Page 16

no-image

AD9754ARU

Manufacturer Part Number
AD9754ARU
Description
IC DAC 14BIT 125MSPS 28-TSSOP
Manufacturer
Analog Devices Inc
Series
TxDAC®r
Datasheets

Specifications of AD9754ARU

Mounting Type
Surface Mount
Rohs Status
RoHS non-compliant
Settling Time
35ns
Number Of Bits
14
Data Interface
Parallel
Number Of Converters
1
Voltage Supply Source
Analog and Digital
Power Dissipation (max)
220mW
Operating Temperature
-40°C ~ 85°C
Package / Case
28-TSSOP
Resolution (bits)
14bit
No. Of Pins
28
Update Rate
125MSPS
Peak Reflow Compatible (260 C)
No
No. Of Bits
14 Bit
Leaded Process Compatible
No
Voltage Rating
5V
Number Of Channels
1
Resolution
14b
Interface Type
Parallel
Single Supply Voltage (typ)
5V
Dual Supply Voltage (typ)
Not RequiredV
Power Supply Requirement
Analog and Digital
Output Type
Current
Single Supply Voltage (min)
4.5V
Single Supply Voltage (max)
5.5V
Dual Supply Voltage (min)
Not RequiredV
Dual Supply Voltage (max)
Not RequiredV
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
28
Lead Free Status / Rohs Status
Not Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD9754ARU
Manufacturer:
AD
Quantity:
707
Part Number:
AD9754ARU
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD9754ARUZ
Manufacturer:
TI
Quantity:
236
Part Number:
AD9754ARUZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD9754ARUZ-REEL7
Manufacturer:
ADI/亚德诺
Quantity:
20 000
AD9754
An example serves to illustrate the effect of supply noise on the
analog supply. Suppose a switching regulator with a switching
frequency of 250 kHz produces 10 mV rms of noise and for
simplicity sake (i.e., ignore harmonics), all of this noise is con-
centrated at 250 kHz. To calculate how much of this undesired
noise will appear as current noise super imposed on the DAC’s
full-scale current, I
using Figure 32 at 250 kHz. To calculate the PSRR for a given
R
V/V, adjust the curve in Figure 32 by the scaling factor 20 Log
(R
by 34 dB (i.e., PSRR of the DAC at 1 MHz which is 74 dB in
Figure 32 becomes 40 dB V
Proper grounding and decoupling should be a primary objective
in any high speed, high resolution system. The AD9754 features
separate analog and digital supply and ground pins to optimize
the management of analog and digital ground currents in a
system. In general, AVDD, the analog supply, should be decoupled
to ACOM, the analog common, as close to the chip as physi-
cally possible. Similarly, DVDD, the digital supply, should be
decoupled to DCOM as close as physically as possible.
For those applications requiring a single +5 V or +3 V supply
for both the analog and digital supply, a clean analog supply
may be generated using the circuit shown in Figure 33. The
circuit consists of a differential LC filter with separate power
supply and return lines. Lower noise can be attained using low
ESR type electrolytic and tantalum capacitors.
Maintaining low noise on power supplies and ground is critical
to obtain optimum results from the AD9754. If properly
implemented, ground planes can perform a host of functions on
high speed circuit boards: bypassing, shielding current trans-
port, etc. In mixed signal design, the analog and digital portions
of the board should be distinct from each other, with the analog
ground plane confined to the areas covering the analog signal
traces, and the digital ground plane confined to areas covering
the digital interconnects.
All analog ground pins of the DAC, reference and other analog
components should be tied directly to the analog ground plane.
The two ground planes should be connected by a path 1/8 to
1/4 inch wide underneath or within 1/2 inch of the DAC to
maintain optimum performance. Care should be taken to ensure
that the ground plane is uninterrupted over crucial signal paths.
On the digital side, this includes the digital input lines running
to the DAC as well as any clock signals. On the analog side, this
includes the DAC output signal, reference signal and the supply
feeders.
LOAD
Figure 33. Differential LC Filter for Single +5 V or +3 V
Applications
LOAD
TTL/CMOS
CIRCUITS
LOGIC
POWER SUPPLY
, such that the units of PSRR are converted from A/V to
). For instance, if R
+5V OR +3V
OUTFS
FERRITE
BEADS
, one must determine the PSRR in dB
LOAD
OUT
/V
is 50 , the PSRR is reduced
100 F
ELECT.
IN
).
10-22 F
TANT.
0.1 F
CER.
AVDD
ACOM
–16–
The use of wide runs or planes in the routing of power lines is
also recommended. This serves the dual role of providing a low
series impedance power supply to the part, as well as providing
some “free” capacitive decoupling to the appropriate ground
plane. It is essential that care be taken in the layout of signal and
power ground interconnects to avoid inducing extraneous volt-
age drops in the signal ground paths. It is recommended that all
connections be short, direct and as physically close to the pack-
age as possible in order to minimize the sharing of conduction
paths between different currents. When runs exceed an inch in
length, strip line techniques with proper termination resistors
should be considered. The necessity and value of this resistor
will be dependent upon the logic family used.
For a more detailed discussion of the implementation and
construction of high speed, mixed signal printed circuit boards,
refer to Analog Devices’ application notes AN-280 and AN-333.
MULTITONE PERFORMANCE CONSIDERATIONS AND
CHARACTERIZATION
The frequency domain performance of high speed DACs has
traditionally been characterized by analyzing the spectral output
of a reconstructed full-scale (i.e., 0 dBFS), single-tone sine wave
at a particular output frequency and update rate. Although this
characterization data is useful, it is often insufficient to reflect a
DAC’s performance for a reconstructed multitone or spread-
spectrum waveform. In fact, evaluating a DAC’s spectral
performance using a full-scale, single tone at the highest specified
frequency (i.e., f
indicative of a DAC’s “worst-case” performance for that given
waveform. In the time domain, this full-scale sine wave represents
the lowest peak-to-rms ratio or crest factor (i.e., V
that this bandlimited signal will encounter.
However, the inherent nature of a multitone, spread spectrum,
or QAM waveform, in which the spectral energy of the wave-
form is spread over a designated bandwidth, will result in a
higher peak-to-rms ratio when compared to the case of a simple
sine wave. As the reconstructed waveform’s peak-to-average
ratio increases, an increasing amount of the signal energy is
concentrated around the DAC’s midscale value. Figure 34a is
just one example of a bandlimited multitone vector (i.e., eight
tones) centered around one-half the Nyquist bandwidth (i.e.,
–100
–110
–10
–20
–30
–40
–50
–60
–70
–80
–90
2.19
Figure 34a. Multitone Spectral Plot
2.25 2.31 2.38 2.44 2.50 2.56 2.63 2.69 2.75
H
) of a bandlimited waveform is typically
FREQUENCY – MHz
PEAK
/V rms)
2.81
REV. A

Related parts for AD9754ARU