ATtiny2313 Atmel Corporation, ATtiny2313 Datasheet - Page 97

no-image

ATtiny2313

Manufacturer Part Number
ATtiny2313
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATtiny2313

Flash (kbytes)
2 Kbytes
Pin Count
20
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
# Of Touch Channels
4
Hardware Qtouch Acquisition
No
Max I/o Pins
18
Ext Interrupts
18
Usb Speed
No
Usb Interface
No
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
0.12
Eeprom (bytes)
128
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATtiny2313-20
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny2313-20MI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny2313-20MU
Manufacturer:
原装ATMEL
Quantity:
20 000
Part Number:
ATtiny2313-20PI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny2313-20PU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATtiny2313-20PU
Quantity:
6 000
Company:
Part Number:
ATtiny2313-20PU
Quantity:
53
Part Number:
ATtiny2313-20SI
Manufacturer:
AT
Quantity:
95
Part Number:
ATtiny2313-20SU
Manufacturer:
ATMEL
Quantity:
441
Part Number:
ATtiny2313-20SU
Manufacturer:
AT
Quantity:
1 212
Part Number:
ATtiny2313A-MMH
Manufacturer:
SAMSUNG
Quantity:
101
Part Number:
ATtiny2313A-MU
Manufacturer:
ATMEL
Quantity:
313
Company:
Part Number:
ATtiny2313A-MU
Quantity:
20 000
Company:
Part Number:
ATtiny2313A-PU
Quantity:
1 800
2543L–AVR–08/10
Note that when using fixed TOP values the unused bits are masked to zero when any of the
OCR1x Registers are written.
The procedure for updating ICR1 differs from updating OCR1A when used for defining the TOP
value. The ICR1 Register is not double buffered. This means that if ICR1 is changed to a low
value when the counter is running with none or a low prescaler value, there is a risk that the new
ICR1 value written is lower than the current value of TCNT1. The result will then be that the
counter will miss the compare match at the TOP value. The counter will then have to count to the
MAX value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.
The OCR1A Register however, is double buffered. This feature allows the OCR1A I/O location
to be written anytime. When the OCR1A I/O location is written the value written will be put into
the OCR1A Buffer Register. The OCR1A Compare Register will then be updated with the value
in the Buffer Register at the next timer clock cycle the TCNT1 matches TOP. The update is done
at the same timer clock cycle as the TCNT1 is cleared and the TOV1 flag is set.
Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed (by changing the TOP value), using the OCR1A
as TOP is clearly a better choice due to its double buffer feature.
In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins.
Setting the COM1x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM1x1:0 to three (see
OC1x value will only be visible on the port pin if the data direction for the port pin is set as output
(DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Register at
the compare match between OCR1x and TCNT1, and clearing (or setting) the OC1x Register at
the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).
The PWM frequency for the output can be calculated by the following equation:
The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).
The extreme values for the OCR1x Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR1x is set equal to BOTTOM (0x0000) the out-
put will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCR1x equal to TOP
will result in a constant high or low output (depending on the polarity of the output set by the
COM1x1:0 bits.)
A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OCF1A to toggle its logical level on each compare match (COM1A1:0 = 1). The waveform
generated will have a maximum frequency of f
(0x0000). This feature is similar to the OCF1A toggle in CTC mode, except the double buffer
feature of the Output Compare unit is enabled in the fast PWM mode.
f
OCnxPWM
=
---------------------------------- -
N
OC
(
f
clk_I/O
1
1
A
+
= f
TOP
clk_I/O
Table 43 on page
)
/2 when OCR1A is set to zero
104). The actual
97

Related parts for ATtiny2313