AD9634 Analog Devices, AD9634 Datasheet - Page 29

no-image

AD9634

Manufacturer Part Number
AD9634
Description
12-Bit, 170 MSPS/210 MSPS/250 MSPS, 1.8 V Analog-to-Digital Converter
Manufacturer
Analog Devices
Datasheet

Specifications of AD9634

Resolution (bits)
12bit
# Chan
1
Sample Rate
250MSPS
Interface
LVDS
Analog Input Type
Diff-Uni
Ain Range
1.75 V p-p
Adc Architecture
Pipelined
Pkg Type
CSP
APPLICATIONS INFORMATION
DESIGN GUIDELINES
Before starting system-level design and layout of the AD9634, it
is recommended that the designer become familiar with these
guidelines, which describe the special circuit connections and
layout requirements needed for certain pins.
Power and Ground Recommendations
When connecting power to the AD9634, it is recommended that
two separate 1.8 V supplies be used: use one supply for analog
(AVDD) and a separate supply for digital outputs (DRVDD).
The designer can employ several different decoupling capacitors
to cover both high and low frequencies. Locate these capacitors
close to the point of entry at the PC board level and close to the
pins of the part with minimal trace length.
A single PCB ground plane should be sufficient when using the
AD9634. With proper decoupling and smart partitioning of the
PCB analog, digital, and clock sections, optimum performance
can be easily achieved.
Exposed Paddle Thermal Heat Slug Recommendations
It is mandatory that the exposed paddle on the underside of the
ADC be connected to analog ground (AGND) to achieve the
best electrical and thermal performance. A continuous, exposed
(no solder mask) copper plane on the PCB should be connected
to the
AD9634
exposed paddle, Pin 0.
Rev. 0 | Page 29 of 32
The copper plane should have several vias to achieve the lowest
possible resistive thermal path for heat dissipation to flow through
the bottom of the PCB. These vias should be filled or plugged with
nonconductive epoxy.
To maximize the coverage and adhesion between the ADC and
the PCB, overlay a silkscreen to partition the continuous plane on
the PCB into several uniform sections. This provides several tie
points between the ADC and the PCB during the reflow process.
Using one continuous plane with no partitions guarantees only one
tie point between the ADC and the PCB. See the evaluation
board for a PCB layout example. For detailed information about
the packaging and PCB layout of chip scale packages, refer to
the
Guide for the Lead Frame Chip Scale Package (LFCSP).
VCM
Decouple the VCM pin to ground with a 0.1 μF capacitor, as
shown in Figure 48.
SPI Port
The SPI port should not be active during periods when the full
dynamic performance of the converter is required. Because the
SCLK, CSB, and SDIO signals are typically asynchronous to the
ADC clock, noise from these signals can degrade converter
performance. If the on-board SPI bus is used for other devices,
it may be necessary to provide buffers between this bus and the
AD9634
input pins during critical sampling periods.
AN-772 Application
to keep these signals from transitioning at the converter
Note, A Design and Manufacturing
AD9634

Related parts for AD9634