OPTOCOUPLER 2.0A 250KHZ 8-DIP

HCPL-3180-000E

Manufacturer Part NumberHCPL-3180-000E
DescriptionOPTOCOUPLER 2.0A 250KHZ 8-DIP
ManufacturerAvago Technologies US Inc.
HCPL-3180-000E datasheet
 


Specifications of HCPL-3180-000E

Package / Case8-DIP (0.300", 7.62mm)Voltage - Isolation3750Vrms
Number Of Channels1, UnidirectionalCurrent - Output / Channel2.5A
Propagation Delay High - Low @ If150ns @ 10mACurrent - Dc Forward (if)16mA
Input TypeDCOutput TypeGate Driver
Mounting TypeThrough HoleIsolation Voltage3750 Vrms
Maximum Fall Time0.025 usMaximum Forward Diode Current25 mA
Minimum Forward Diode Voltage1.2 VOutput DeviceIntegrated Photo IC
Configuration1 ChannelMaximum Forward Diode Voltage1.8 V
Maximum Reverse Diode Voltage5 VMaximum Power Dissipation295 mW
Maximum Operating Temperature+ 100 CMinimum Operating Temperature- 40 C
Number Of Elements1Forward Voltage1.8V
Forward Current25mAPackage TypePDIP
Operating Temp Range-40C to 100CPower Dissipation295mW
Propagation Delay Time200nsPin Count8
MountingThrough HoleReverse Breakdown Voltage5V
Operating Temperature ClassificationIndustrialNo. Of Channels1
Optocoupler Output TypeGate DriveInput Current16mA
Output Voltage20VOpto Case StyleDIP
No. Of Pins8Common Mode Ratio10 KV/uS
Rohs CompliantYesLead Free Status / RoHS StatusLead free / RoHS Compliant
Other names516-1674-5  
1
2
3
4
5
6
7
8
9
10
11
Page 11
12
Page 12
13
Page 13
14
Page 14
15
Page 15
16
Page 16
Page 13/16

Download datasheet (253Kb)Embed
PrevNext
Thermal Model
(Discussion applies to HCPL-3180)
The steady state thermal model for the HCPL-3180 is
shown in Figure 27. The thermal resistance values given
in this model can be used to calculate the temperatures
at each node for a given operating condition. As shown
by the model, all heat generated flows through q
raises the case temperature TC accordingly. The value of
q
depends on the conditions of the board design and
CA
is, therefore, determined by the designer. The value of
+ q
) + q
T
= P
* (q
//q
JE
E
LC
LD
DC
q
* q
[
LC
DC
T
= P
*
JD
E
q
+ q
+ q
LC
DC
LD
θ
= 442 °C/W
LD
T
T
JE
JD
θ
= 467 °C/W
θ
= 126 °C/W
LC
DC
T
C
θ
= 83 °C/W*
CA
T
A
Figure 27. Thermal model.
* (256°C/W + q
T
= P
JE
E
CA
* (57°C/W + q
T
= P
) + P
JD
E
CA
For example, given P
= 45 mW,
E
= +70 °C and q
P
= 250 mW, T
= +83 °C/W:
O
A
CA
T
= P
* 339°C/W + P
* 140°C/W + T
JE
E
D
= 45 mW * 339°C/W + 250 mW * 140°C/W + 70°C
= 120°C
T
= P
* 140°C/W + P
* 194°C/W + T
JD
E
D
= 45 mW * 140°C/W + 250 mW * 194°C/W + 70°C
= 125°C
T
and T
should be limited to +125 °C based on the board layout and part
JE
JD
placement (q
) specific to the application.
CA
13
q
= +83 °C/W was obtained from thermal measure-
CA
ments using a 2.5 x 2.5 inch PC board, with small traces
(no ground plane), a single HCPL- 3180 soldered into the
center of the board and still air. The absolute maximum
power dissipation derating specifications assume a q
which
CA
value of +83 °C/W. From the thermal mode in Figure 27,
the LED and detector IC junction temperatures can be
expressed as:
q
* q
[
LC
DC
+ q
) + P
*
CA
D
CA
q
+ q
+ q
LC
DC
LD
]
+ q
+ q
) + q
+ P
(q
//q
CA
D *
LC
LD
DC
CA
T
= LED JUNCTION TEMPERATURE
JE
T
= DETECTOR IC JUNCTION TEMPERATURE
JD
T
= CASE TEMPERATURE MEASURED AT THE
C
CENTER OF THE PACKAGE BOTTOM
θ
= LED-TO-CASE THERMAL RESISTANCE
LC
θ
= LED-TO-DETECTOR THERMAL RESISTANCE
LD
θ
= DETECTOR-TO-CASE THERMAL RESISTANCE
DC
θ
= CASE-TO-AMBIENT THERMAL RESISTANCE
CA
WILL DEPEND ON THE BOARD DESIGN AND
CA
THE PLACEMENT OF THE PART.
* (57°C/W + q
) + P
) + T
D
CA
A
* (111°C/W + q
) + T
D
CA
A
A
A
]
+ T
A
) + T
A
CA