EVAL-AD7674CBZ Analog Devices Inc, EVAL-AD7674CBZ Datasheet - Page 11

BOARD EVALUATION FOR AD7674

EVAL-AD7674CBZ

Manufacturer Part Number
EVAL-AD7674CBZ
Description
BOARD EVALUATION FOR AD7674
Manufacturer
Analog Devices Inc
Series
PulSAR®r
Datasheets

Specifications of EVAL-AD7674CBZ

Number Of Adc's
1
Number Of Bits
18
Sampling Rate (per Second)
800k
Data Interface
Serial, Parallel
Inputs Per Adc
1 Differential
Input Range
0 ~ 5 V
Power (typ) @ Conditions
126mW @ 800kSPS
Voltage Supply Source
Analog and Digital
Operating Temperature
-40°C ~ 85°C
Utilized Ic / Part
AD7674
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
DEFINITIONS OF SPECIFICATIONS
Integral Nonlinearity Error (INL)
Linearity error refers to the deviation of each individual code
from a line drawn from negative full scale through positive full
scale. The point used as negative full scale occurs ½ LSB before
the first code transition. Positive full scale is defined as a level
1½ LSB beyond the last code transition. The deviation is
measured from the middle of each code to the true straight line.
Differential Nonlinearity Error (DNL)
In an ideal ADC, code transitions are 1 LSB apart. Differential
nonlinearity is the maximum deviation from this ideal value. It
is often specified in terms of resolution for which no missing
codes are guaranteed.
Gain Error
The first transition (from 000…00 to 000…01) should occur for
an analog voltage ½ LSB above the nominal negative full scale
(–4.095991 V for the ±4.096 V range). The last transition (from
111…10 to 111…11) should occur for an analog voltage
1½ LSB below the nominal full scale (4.095977 V for the
±4.096 V range). The gain error is the deviation of the
difference between the actual level of the last transition and the
actual level of the first transition from the difference between
the ideal levels.
Zero Error
The zero error is the difference between the ideal midscale
input voltage (0 V) from the actual voltage producing the
midscale output code.
Spurious-Free Dynamic Range (SFDR)
SFDR is the difference, in decibels (dB), between the rms
amplitude of the input signal and the peak spurious signal.
Effective Number of Bits (ENOB)
ENOB is a measurement of the resolution with a sine wave
input, and is expressed in bits. It is related to S/(N+D) by the
following formula:
ENOB = (S/[N+D]dB – 1.76)/6.02
Rev. A | Page 11 of 28
Total Harmonic Distortion (THD)
THD is the ratio of the rms sum of the first five harmonic
components to the rms value of a full-scale input signal, and is
expressed in decibels.
Dynamic Range
Dynamic range is the ratio of the rms value of the full scale to
the rms noise measured with the inputs shorted together. The
value for dynamic range is expressed in decibels.
Signal-to-Noise Ratio (SNR)
SNR is the ratio of the rms value of the actual input signal to the
rms sum of all other spectral components below the Nyquist
frequency, excluding harmonics and dc. The value for SNR is
expressed in decibels.
Signal-to-(Noise + Distortion) Ratio (S/[N+D])
S/(N+D) is the ratio of the rms value of the actual input signal
to the rms sum of all other spectral components below the
Nyquist frequency, including harmonics but excluding dc. The
value for S/(N+D) is expressed in decibels.
Aperture Delay
Aperture delay is a measure of the acquisition performance and
is measured from the falling edge of the CNVST input to when
the input signal is held for a conversion.
Transient Response
Transient response is the time required for the AD7674 to
achieve its rated accuracy after a full-scale step function is
applied to its input.
AD7674

Related parts for EVAL-AD7674CBZ