ISL6553EVAL1 Intersil, ISL6553EVAL1 Datasheet - Page 14

no-image

ISL6553EVAL1

Manufacturer Part Number
ISL6553EVAL1
Description
EVALUATION BOARD ISL6553
Manufacturer
Intersil
Series
Endura™r
Datasheets

Specifications of ISL6553EVAL1

Main Purpose
Special Purpose DC/DC, VRM Supply
Outputs And Type
1, Non-Isolated
Power - Output
45W
Voltage - Output
1.5V
Current - Output
30A
Voltage - Input
5V, 12V
Regulator Topology
Buck
Frequency - Switching
350kHz
Board Type
Fully Populated
Utilized Ic / Part
HIP6601, ISL6553
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Input Capacitor Selection
The important parameters for the bulk input capacitors are
the voltage rating and the RMS current rating. For reliable
operation, select bulk input capacitors with voltage and
current ratings above the maximum input voltage and
largest RMS current required by the circuit. The capacitor
voltage rating should be at least 1.25 times greater than the
maximum input voltage and a voltage rating of 1.5 times is
a conservative guideline. The RMS current required for a
multi-phase converter can be approximated with the aid of
Figure 13.
First determine the operating duty ratio as the ratio of the
output voltage divided by the input voltage. Find the Current
Multiplier from the curve with the appropriate power
channels. Multiply the current multiplier by the full load
output current. The resulting value is the RMS current rating
required by the input capacitor.
Use a mix of input bypass capacitors to control the voltage
overshoot across the MOSFETs. Use ceramic capacitance
for the high frequency decoupling and bulk capacitors to
supply the RMS current. Small ceramic capacitors should
be placed very close to the drain of the upper MOSFET to
suppress the voltage induced in the parasitic circuit
impedances.
0.5
0.4
0.3
0.2
0.1
FIGURE 13. CURRENT MULTIPLIER vs DUTY CYCLE
0
1.0
0.8
0.6
0.4
0.2
0
FIGURE 12. RIPPLE CURRENT vs DUTY CYCLE
0
0
3 CHANNEL
4 CHANNEL
0.1
0.1
4 CHANNEL
DUTY CYCLE (V
DUTY CYCLE (V
0.2
0.2
14
3 CHANNEL
SINGLE
CHANNEL
SINGLE
CHANNEL
2 CHANNEL
0.3
O
0.3
O
/V
/V
IN
2 CHANNEL
IN
)
)
0.4
0.4
0.5
0.5
ISL6553
For bulk capacitance, several electrolytic capacitors (Panasonic
HFQ series or Nichicon PL series or Sanyo MV-GX or
equivalent) may be needed. For surface mount designs, solid
tantalum capacitors can be used, but caution must be exercised
with regard to the capacitor surge current rating. These
capacitors must be capable of handling the surge-current at
power-up. The TPS series available from AVX, and the 593D
series from Sprague are both surge current tested.
MOSFET Selection and Considerations
In high-current PWM applications, the MOSFET power
dissipation, package selection and heatsink are the
dominant design factors. The power dissipation includes two
loss components; conduction loss and switching loss. These
losses are distributed between the upper and lower
MOSFETs according to duty factor (see the following
equations). The conduction losses are the main component
of power dissipation for the lower MOSFETs, Q2 and Q4 of
Figure 1. Only the upper MOSFETs, Q1 and Q3 have
significant switching losses, since the lower device turns on
and off into near zero voltage.
The equations assume linear voltage-current transitions and
do not model power loss due to the reverse-recovery of the
lower MOSFETs body diode. The gate-charge losses are
dissipated by the Driver IC and don’t heat the MOSFETs.
However, large gate-charge increases the switching time,
t
Ensure that both MOSFETs are within their maximum
junction temperature at high ambient temperature by
calculating the temperature rise according to package
thermal-resistance specifications. A separate heatsink may
be necessary depending upon MOSFET power, package
type, ambient temperature and air flow.
A diode, anode to ground, may be placed across Q2 and Q4
of Figure 1. These diodes function as a clamp that catches
the negative inductor swing during the dead time between
the turn off of the lower MOSFETs and the turn on of the
upper MOSFETs. The diodes must be a Schottky type to
prevent the lossy parasitic MOSFET body diode from
conducting. It is usually acceptable to omit the diodes and let
the body diodes of the lower MOSFETs clamp the negative
inductor swing, but efficiency could drop one or two percent
as a result. The diode's rated reverse breakdown voltage
must be greater than the maximum input voltage.
References
Intersil documents are available on the web at
www.intersil.com/
P
P
SW
[1] HIP6601/HIP6603 Data Sheet, Intersil Corporation,
[2] HIP6602 Data Sheet, Intersil Corporation, File No. 4838
UPPER
LOWER
which increases the upper MOSFET switching losses.
File No. 4819
=
=
I
----------------------------------------------------------- -
I
-------------------------------------------------------------------------------- -
O
O
2
2
×
×
r
r
DS ON
DS ON
V
(
(
IN
)
V
)
×
×
IN
V
(
V
OUT
IN
+
V
I
--------------------------------------------------------- -
OUT
O
×
V
)
IN
×
2
t
SW
×
F
SW

Related parts for ISL6553EVAL1