DSPIC30F4013-30I/PT Microchip Technology, DSPIC30F4013-30I/PT Datasheet - Page 126

IC DSPIC MCU/DSP 48K 44TQFP

DSPIC30F4013-30I/PT

Manufacturer Part Number
DSPIC30F4013-30I/PT
Description
IC DSPIC MCU/DSP 48K 44TQFP
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F4013-30I/PT

Program Memory Type
FLASH
Package / Case
44-TQFP, 44-VQFP
Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
AC'97, Brown-out Detect/Reset, I²S, POR, PWM, WDT
Number Of I /o
30
Program Memory Size
48KB (16K x 24)
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 13x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Data Bus Width
16 bit
Processor Series
DSPIC30F
Core
dsPIC
Maximum Clock Frequency
40 MHz
Operating Supply Voltage
2.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Data Rom Size
1024 B
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, DM240002, DM300018, DM330011
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT44PT3 - SOCKET TRAN ICE 44MQFP/TQFPAC30F006 - MODULE SKT FOR DSPIC30F 44TQFPAC164305 - MODULE SKT FOR PM3 44TQFPDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
DSPIC30F401330IPT

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F4013-30I/PT
Manufacturer:
MICROCHIP
Quantity:
1 600
Part Number:
DSPIC30F4013-30I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F4013-30I/PT
Manufacturer:
MICR0CHIP
Quantity:
20 000
dsPIC30F3014/4013
18.3.8
The sample clock edge (CSCKE) control bit determines
the sampling edge for the CSCK signal. If the CSCK bit
is cleared (default), data is sampled on the falling edge
of the CSCK signal. The AC-Link protocols and most
multichannel formats require that data be sampled on
the falling edge of the CSCK signal. If the CSCK bit is
set, data is sampled on the rising edge of CSCK. The
I
edge of the CSCK signal.
18.3.9
In most applications, the data transfer begins one
CSCK cycle after the COFS signal is sampled active.
This is the default configuration of the DCI module. An
alternate data alignment can be selected by setting the
DJST control bit in the DCICON1 SFR. When DJST = 1,
data transfers begin during the same CSCK cycle when
the COFS signal is sampled active.
18.3.10
The TSCON SFR has control bits that are used to
enable up to 16 time slots for transmission. These con-
trol bits are the TSE<15:0> bits. The size of each time
slot is determined by the WS<3:0> word-size selection
bits and can vary up to 16 bits.
If a transmit time slot is enabled via one of the TSE bits
(TSEx = 1), the contents of the current transmit shadow
buffer location is loaded into the CSDO Shift register
and the DCI buffer control unit is incremented to point
to the next location.
During an unused transmit time slot, the CSDO pin
drives ‘0’s or is tri-stated during all disabled time slots
depending on the state of the CSDOM bit in the
DCICON1 SFR.
The data frame size in bits is determined by the chosen
data word size and the number of data word elements
in the frame. If the chosen frame size has less than
16 elements, the additional slot enable bits have no
effect.
Each transmit data word is written to the 16-bit transmit
buffer as left justified data. If the selected word size is
less than 16 bits, then the LSbs of the transmit buffer
memory have no effect on the transmitted data. The
user should write ‘0’s to the unused LSbs of each
transmit buffer location.
DS70138G-page 126
2
S protocol requires that data be sampled on the rising
SAMPLE CLOCK EDGE
CONTROL BIT
DATA JUSTIFICATION
CONTROL BIT
TRANSMIT SLOT ENABLE BITS
18.3.11
The RSCON SFR contains control bits that are used to
enable up to 16 time slots for reception. These control
bits are the RSE<15:0> bits. The size of each receive
time slot is determined by the WS<3:0> word-size
selection bits and can vary from 1 to 16 bits.
If a receive time slot is enabled via one of the RSE bits
(RSEx = 1), the shift register contents are written to the
current DCI receive shadow buffer location and the buf-
fer control unit is incremented to point to the next buffer
location.
Data is not packed in the receive memory buffer loca-
tions if the selected word size is less than 16 bits. Each
received slot data word is stored in a separate 16-bit
buffer location. Data is always stored in a left justified
format in the receive memory buffer.
18.3.12
The TSE and RSE control bits operate in concert with
the DCI Frame Sync generator. In the Master mode, a
COFS signal is generated whenever the Frame Sync
generator is reset. In the Slave mode, the Frame Sync
generator is reset whenever a COFS pulse is received.
The TSE and RSE control bits allow up to 16 consecu-
tive time slots to be enabled for transmit or receive.
After the last enabled time slot has been transmitted/
received, the DCI stops buffering data until the next
occurring COFS pulse.
18.3.13
The DCI buffer control unit is incremented by one word
location whenever a given time slot has been enabled
for transmission or reception. In most cases, data input
and output transfers are synchronized, which means
that a data sample is received for a given channel at the
same time a data sample is transmitted. Therefore, the
transmit and receive buffers are filled with equal
amounts of data when a DCI interrupt is generated.
In some cases, the amount of data transmitted and
received during a data frame may not be equal. As an
example, assume a two-word data frame is used.
Furthermore, assume that data is only received during
slot #0 but is transmitted during slot #0 and slot #1. In
this case, the buffer control unit counter would be
incremented twice during a data frame but only one
receive register location would be filled with data.
RECEIVE SLOT ENABLE BITS
SLOT ENABLE BITS OPERATION
WITH FRAME SYNC
SYNCHRONOUS DATA
TRANSFERS
 2010 Microchip Technology Inc.

Related parts for DSPIC30F4013-30I/PT