DSPIC30F4013-30I/PT Microchip Technology, DSPIC30F4013-30I/PT Datasheet - Page 22

IC DSPIC MCU/DSP 48K 44TQFP

DSPIC30F4013-30I/PT

Manufacturer Part Number
DSPIC30F4013-30I/PT
Description
IC DSPIC MCU/DSP 48K 44TQFP
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F4013-30I/PT

Program Memory Type
FLASH
Package / Case
44-TQFP, 44-VQFP
Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
AC'97, Brown-out Detect/Reset, I²S, POR, PWM, WDT
Number Of I /o
30
Program Memory Size
48KB (16K x 24)
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 13x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Data Bus Width
16 bit
Processor Series
DSPIC30F
Core
dsPIC
Maximum Clock Frequency
40 MHz
Operating Supply Voltage
2.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Data Rom Size
1024 B
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, DM240002, DM300018, DM330011
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT44PT3 - SOCKET TRAN ICE 44MQFP/TQFPAC30F006 - MODULE SKT FOR DSPIC30F 44TQFPAC164305 - MODULE SKT FOR PM3 44TQFPDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
DSPIC30F401330IPT

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F4013-30I/PT
Manufacturer:
MICROCHIP
Quantity:
1 600
Part Number:
DSPIC30F4013-30I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F4013-30I/PT
Manufacturer:
MICR0CHIP
Quantity:
20 000
dsPIC30F3014/4013
The SA and SB bits are modified each time data
passes through the adder/subtracter but can only be
cleared by the user. When set, they indicate that the
accumulator has overflowed its maximum range (bit 31
for 32-bit saturation or bit 39 for 40-bit saturation) and
will be saturated if saturation is enabled. When
saturation is not enabled, SA and SB default to bit 39
overflow and, thus, indicate that a catastrophic over-
flow has occurred. If the COVTE bit in the INTCON1
register is set, SA and SB bits generate an arithmetic
warning trap when saturation is disabled.
The overflow and saturation Status bits can optionally
be viewed in the STATUS register (SR) as the logical
OR of OA and OB (in bit OAB) and the logical OR of SA
and SB (in bit SAB). This allows programmers to check
one bit in the STATUS register to determine if either
accumulator has overflowed, or one bit to determine if
either accumulator has saturated. This would be useful
for complex number arithmetic which typically uses
both the accumulators.
The device supports three saturation and overflow
modes:
1.
2.
3.
DS70138G-page 22
Bit 39 Overflow and Saturation:
When bit 39 overflow and saturation occurs, the
saturation logic loads the maximally positive 9.31
(0x7FFFFFFFFF), or maximally negative 9.31
value (0x8000000000) into the target accumula-
tor. The SA or SB bit is set and remains set until
cleared by the user. This is referred to as ‘super
saturation’ and provides protection against erro-
neous data or unexpected algorithm problems
(e.g., gain calculations).
Bit 31 Overflow and Saturation:
When bit 31 overflow and saturation occurs, the
saturation logic then loads the maximally posi-
tive 1.31 value (0x007FFFFFFF), or maximally
negative 1.31 value (0x0080000000) into the
target accumulator. The SA or SB bit is set and
remains set until cleared by the user. When this
Saturation mode is in effect, the guard bits are
not used, so the OA, OB or OAB bits are never
set.
Bit 39 Catastrophic Overflow:
The bit 39 overflow Status bit from the adder is
used to set the SA or SB bit which remain set
until cleared by the user. No saturation operation
is performed and the accumulator is allowed to
overflow (destroying its sign). If the COVTE bit in
the INTCON1 register is set, a catastrophic
overflow can initiate a trap exception.
2.4.2.2
The MAC class of instructions (with the exception of
MPY, MPY.N, ED and EDAC) can optionally write a
rounded version of the high word (bits 31 through 16)
of the accumulator that is not targeted by the instruction
into data space memory. The write is performed across
the X bus into combined X and Y address space. The
following addressing modes are supported:
1.
2.
2.4.2.3
The round logic is a combinational block which performs
a conventional (biased) or convergent (unbiased) round
function during an accumulator write (store). The Round
mode is determined by the state of the RND bit in the
CORCON register. It generates a 16-bit, 1.15 data value,
which is passed to the data space write saturation logic.
If rounding is not indicated by the instruction, a truncated
1.15 data value is stored and the least significant word
(lsw) is simply discarded.
Conventional rounding takes bit 15 of the accumulator,
zero-extends it and adds it to the ACCxH word (bits 16
through 31 of the accumulator). If the ACCxL word
(bits 0 through 15 of the accumulator) is between
0x8000 and 0xFFFF (0x8000 included), ACCxH is
incremented. If ACCxL is between 0x0000 and 0x7FFF,
ACCxH is left unchanged. A consequence of this algo-
rithm is that over a succession of random rounding
operations, the value tends to be biased slightly
positive.
Convergent (or unbiased) rounding operates in the
same manner as conventional rounding, except when
ACCxL equals 0x8000. If this is the case, the Least Sig-
nificant bit (LSb) (bit 16 of the accumulator) of ACCxH
is examined. If it is ‘1’, ACCxH is incremented. If it is ‘0’,
ACCxH is not modified. Assuming that bit 16 is
effectively random in nature, this scheme removes any
rounding bias that may accumulate.
The SAC and SAC.R instructions store either a trun-
cated (SAC) or rounded (SAC.R) version of the contents
of the target accumulator to data memory via the X bus
(subject to data saturation, see
Space Write
of instructions, the accumulator write-back operation
functions in the same manner, addressing combined
MCU (X and Y) data space though the X bus. For this
class of instructions, the data is always subject to
rounding.
W13, Register Direct:
The rounded contents of the non-target
accumulator are written into W13 as a
1.15 fraction.
[W13]+=2, Register Indirect with Post-Increment:
The rounded contents of the non-target accumu-
lator are written into the address pointed to by
W13 as a 1.15 fraction. W13 is then
incremented by 2 (for a word write).
Saturation”). Note that for the MAC class
Accumulator ‘Write-Back’
Round Logic
 2010 Microchip Technology Inc.
Section 2.4.2.4 “Data

Related parts for DSPIC30F4013-30I/PT