ATMEGA88-20PU Atmel, ATMEGA88-20PU Datasheet - Page 44

IC AVR MCU 8K 20MHZ 5V 28DIP

ATMEGA88-20PU

Manufacturer Part Number
ATMEGA88-20PU
Description
IC AVR MCU 8K 20MHZ 5V 28DIP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA88-20PU

Core Processor
AVR
Core Size
8-Bit
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
23
Program Memory Size
8KB (4K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 6x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-DIP (0.300", 7.62mm)
Cpu Family
ATmega
Device Core
AVR
Device Core Size
8b
Frequency (max)
20MHz
Interface Type
SPI/TWI/USART
Total Internal Ram Size
1KB
# I/os (max)
23
Number Of Timers - General Purpose
3
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
On-chip Adc
6-chx10-bit
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Through Hole
Pin Count
28
Package Type
PDIP
Processor Series
ATMEGA8x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
1 KB
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
23
Number Of Timers
3
Operating Supply Voltage
2.7 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT, ATAVRTS2080A, ATASTK512-EK1-IND
Minimum Operating Temperature
- 40 C
Package
28PDIP
Family Name
ATmega
Maximum Speed
20 MHz
For Use With
ATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATAVRISP2 - PROGRAMMER AVR IN SYSTEM
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
10. System Control and Reset
10.1
10.2
44
Resetting the AVR
Reset Sources
ATmega48/88/168
During reset, all I/O Registers are set to their initial values, and the program starts execution
from the Reset Vector. For the ATmega168, the instruction placed at the Reset Vector must be a
JMP – Absolute Jump – instruction to the reset handling routine. For the ATmega48 and
ATmega88, the instruction placed at the Reset Vector must be an RJMP – Relative Jump –
instruction to the reset handling routine. If the program never enables an interrupt source, the
Interrupt Vectors are not used, and regular program code can be placed at these locations. This
is also the case if the Reset Vector is in the Application section while the Interrupt Vectors are in
the Boot section or vice versa (ATmega88/168 only). The circuit diagram in
the reset logic.
The I/O ports of the AVR are immediately reset to their initial state when a reset source goes
active. This does not require any clock source to be running.
After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the power to reach a stable level before normal operation starts. The time-out
period of the delay counter is defined by the user through the SUT and CKSEL Fuses. The dif-
ferent selections for the delay period are presented in
The ATmega48/88/168 has four sources of reset:
• Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset
• External Reset. The MCU is reset when a low level is present on the RESET pin for longer than
• Watchdog System Reset. The MCU is reset when the Watchdog Timer period expires and the
• Brown-out Reset. The MCU is reset when the supply voltage V
threshold (V
the minimum pulse length.
Watchdog System Reset mode is enabled.
threshold (V
POT
BOT
Table 28-3
).
) and the Brown-out Detector is enabled.
defines the electrical parameters of the reset circuitry.
“Clock Sources” on page
CC
is below the Brown-out Reset
Figure 10-1
27.
2545S–AVR–07/10
shows

Related parts for ATMEGA88-20PU