ATMEGA64A-MNR Atmel, ATMEGA64A-MNR Datasheet - Page 289

IC MCU AVR 64K FLASH 8QFN

ATMEGA64A-MNR

Manufacturer Part Number
ATMEGA64A-MNR
Description
IC MCU AVR 64K FLASH 8QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA64A-MNR

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
*
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
SPI, UART, I2C
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
53
Operating Supply Voltage
2.7 V to 5.5 V
Maximum Operating Temperature
+ 105 C
Mounting Style
SMD/SMT
Operating Temperature Range
- 40 C to + 85 C
Processor To Be Evaluated
ATMEGA64A
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
26.8.7
26.8.8
26.8.9
8160C–AVR–07/09
Setting the Boot Loader Lock Bits by SPM
EEPROM Write Prevents Writing to SPMCSR
Reading the Fuse and Lock Bits from Software
RWWSB by writing the RWWSRE. See
page 290
To set the Boot Loader Lock bits, write the desired data to R0, write “X0001001” to SPMCSR
and execute SPM within four clock cycles after writing SPMCSR. The only accessible Lock bits
are the Boot Lock bits that may prevent the Application and Boot Loader section from any soft-
ware update by the MCU.
See
Flash access.
If bits 5:2 in R0 are cleared (zero), the corresponding Boot Lock bit will be programmed if an
SPM instruction is executed within four cycles after BLBSET and SPMEN are set in SPMCSR.
The Z-pointer is don’t care during this operation, but for future compatibility it is recommended to
load the Z-pointer with 0x0001 (same as used for reading the Lock bits). For future compatibility
It is also recommended to set bits 7, 6, 1, and 0 in R0 to “1” when writing the Lock bits. When
programming the Lock bits the entire Flash can be read during the operation.
Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
is recommended that the user checks the status bit (EEWE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCSR Register.
It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCSR. When an LPM instruc-
tion is executed within three CPU cycles after the BLBSET and SPMEN bits are set in SPMCSR,
the value of the Lock bits will be loaded in the destination register. The BLBSET and SPMEN
bits will auto-clear upon completion of reading the Lock bits or if no LPM instruction is executed
within three CPU cycles or no SPM instruction is executed within four CPU cycles. When BLB-
SET and SPMEN are cleared, LPM will work as described in the AVR Instruction Set Reference
Manual.
The algorithm for reading the Fuse Low bits is similar to the one described above for reading the
Lock bits. To read the Fuse Low bits, load the Z-pointer with 0x0000 and set the BLBSET and
SPMEN bits in SPMCSR. When an LPM instruction is executed within three cycles after the
BLBSET and SPMEN bits are set in the SPMCSR, the value of the Fuse Low bits (FLB) will be
loaded in the destination register as shown below. Refer to
detailed description and mapping of the Fuse Low bits.
Similarly, when reading the Fuse High bits, load 0x0003 in the Z-pointer. When an LPM instruc-
tion is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR,
Bit
R0
Bit
Rd
Bit
Rd
Table 26-2
for an example.
FLB7
and
7
1
7
7
Table 26-3
FLB6
6
1
6
6
for how the different settings of the Boot Loader Bits affect the
BLB12
BLB12
FLB5
5
5
5
“Simple Assembly Code Example for a Boot Loader” on
BLB11
BLB11
FLB4
4
4
4
BLB02
BLB02
FLB3
3
3
3
BLB01
BLB01
FLB2
2
2
2
Table 27-5 on page 297
FLB1
LB2
1
1
1
1
ATmega64A
FLB0
LB1
0
0
1
0
for a
289

Related parts for ATMEGA64A-MNR