PIC16LF819T-I/SSTSL Microchip Technology, PIC16LF819T-I/SSTSL Datasheet - Page 182

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,SSOP,20PIN,PLASTIC

PIC16LF819T-I/SSTSL

Manufacturer Part Number
PIC16LF819T-I/SSTSL
Description
IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,SSOP,20PIN,PLASTIC
Manufacturer
Microchip Technology
Series
PIC® 16Fr

Specifications of PIC16LF819T-I/SSTSL

Rohs Compliant
YES
Core Processor
PIC
Core Size
8-Bit
Speed
10MHz
Connectivity
I²C, SPI
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
16
Program Memory Size
3.5KB (2K x 14)
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
256 x 8
Voltage - Supply (vcc/vdd)
2 V ~ 5.5 V
Data Converters
A/D 5x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
20-SSOP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
PIC16LF819TISSTSL
PIC18F2450/4450
16.1
For the A/D Converter to meet its specified accuracy,
the charge holding capacitor (C
to fully charge to the input channel voltage level. The
analog input model is shown in Figure 16-3. The
source impedance (R
switch (R
required to charge the capacitor C
switch (R
(V
at the analog input (due to pin leakage current). The
maximum recommended impedance for analog
sources is 2.5 kΩ. After the analog input channel is
selected (changed), the channel must be sampled for
at least the minimum acquisition time before starting a
conversion.
EQUATION 16-1:
EQUATION 16-2:
EQUATION 16-3:
DS39760D-page 180
T
V
or
T
T
T
T
Temperature coefficient is only required for temperatures > 25°C. Below 25°C, T
T
T
ACQ
DD
Note:
C
ACQ
AMP
COFF
C
ACQ
HOLD
). The source impedance affects the offset voltage
=
=
A/D Acquisition Requirements
SS
=
=
=
=
=
SS
=
=
) impedance varies over the device voltage
When the conversion is started, the
holding capacitor is disconnected from the
input pin.
Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
T
) impedance directly affect the time
AMP
T
0.2 μs
(Temp – 25°C)(0.02 μs/°C)
(85°C – 25°C)(0.02 μs/°C)
1.2 μs
-(C
-(25 pF) (1 kΩ + 2 kΩ + 2.5 kΩ) ln(0.0004883) μs
1.05 μs
0.2 μs + 1 μs + 1.2 μs
2.4 μs
(V
-(C
AMP
HOLD
+ T
REF
HOLD
+ T
C
– (V
ACQUISITION TIME
A/D MINIMUM CHARGING TIME
CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME
S
+ T
)(R
C
) and the internal sampling
)(R
+ T
REF
COFF
IC
IC
+ R
COFF
/2048)) • (1 – e
+ R
HOLD
SS
SS
HOLD
+ R
+ R
) must be allowed
S
S
) ln(1/2047) μs
. The sampling
) ln(1/2048)
(-T
C
/C
HOLD
(R
IC
+ R
SS
+ R
S
To
Equation 16-1 may be used. This equation assumes
that 1/2 LSb error is used (1024 steps for the A/D). The
1/2 LSb error is the maximum error allowed for the A/D
to meet its specified resolution.
Example 16-3 shows the calculation of the minimum
required acquisition time T
based
assumptions:
C
Rs
Conversion Error
V
Temperature
))
HOLD
DD
)
calculate
on
COFF
the
= 0 ms.
the
=
=
=
=
following
minimum
© 2008 Microchip Technology Inc.
25 pF
2.5 kΩ
1/2 LSb
5V → R
85°C (system max.)
ACQ
. This calculation is
SS
application
acquisition
= 2 kΩ
system
time,

Related parts for PIC16LF819T-I/SSTSL