ATmega8515 Atmel Corporation, ATmega8515 Datasheet - Page 112

no-image

ATmega8515

Manufacturer Part Number
ATmega8515
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega8515

Flash (kbytes)
8 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
35
Ext Interrupts
3
Usb Speed
No
Usb Interface
No
Spi
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
0.5
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
3
Input Capture Channels
1
Pwm Channels
3
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA8515
Manufacturer:
ATMEL
Quantity:
5 510
Part Number:
ATMEGA8515
Manufacturer:
NS
Quantity:
5 510
Part Number:
ATMEGA8515
Manufacturer:
AT
Quantity:
20 000
Part Number:
ATmega8515-16AC
Manufacturer:
MOT
Quantity:
3 450
Part Number:
ATmega8515-16AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8515-16AC
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega8515-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8515-16AI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega8515-16AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8515-16AU
Manufacturer:
ATMEL
Quantity:
4 500
Part Number:
ATmega8515-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8515-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega8515-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8515-16JU
Quantity:
1 831
Part Number:
ATmega8515-16PU
Manufacturer:
AT
Quantity:
20 000
112
ATmega8515(L)
are enabled, the interrupt handler routine can be used for updating the TOP and com-
pare values.
When changing the TOP value the program must ensure that the new TOP value is
higher or equal to the value of all of the compare registers. If the TOP value is lower
than any of the compare registers, a Compare Match will never occur between the
TCNT1 and the OCR1x. Note that when using fixed TOP values the unused bits are
masked to zero when any of the OCR1x Registers are written.
The procedure for updating ICR1 differs from updating OCR1A when used for defining
the TOP value. The ICR1 Register is not double buffered. This means that if ICR1 is
changed to a low value when the counter is running with none or a low prescaler value,
there is a risk that the new ICR1 value written is lower than the current value of TCNT1.
The result will then be that the counter will miss the Compare Match at the TOP value.
The counter will then have to count to the MAX value (0xFFFF) and wrap around start-
ing at 0x0000 before the Compare Match can occur. The OCR1A Register however, is
double buffered. This feature allows the OCR1A I/O location to be written anytime.
When the OCR1A I/O location is written the value written will be put into the OCR1A
Buffer Register. The OCR1A Compare Register will then be updated with the value in
the Buffer Register at the next timer clock cycle the TCNT1 matches TOP. The update is
done at the same timer clock cycle as the TCNT1 is cleared and the TOV1 Flag is set.
Using the ICR1 Register for defining TOP works well when using fixed TOP values. By
using ICR1, the OCR1A Register is free to be used for generating a PWM output on
OC1A. However, if the base PWM frequency is actively changed (by changing the TOP
value), using the OCR1A as TOP is clearly a better choice due to its double buffer
feature.
In fast PWM mode, the compare units allow generation of PWM waveforms on the
OC1x pins. Setting the COM1x1:0 bits to 2 will produce a non-inverted PWM and an
inverted PWM output can be generated by setting the COM1x1:0 to 3 (See Table on
page 119). The actual OC1x value will only be visible on the port pin if the data direction
for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by set-
ting (or clearing) the OC1x Register at the Compare Match between OCR1x and
TCNT1, and clearing (or setting) the OC1x Register at the timer clock cycle the counter
is cleared (changes from TOP to BOTTOM).
The PWM frequency for the output can be calculated by the following equation:
The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).
The extreme values for the OCR1x Register represents special cases when generating
a PWM waveform output in the fast PWM mode. If the OCR1x is set equal to BOTTOM
(0x0000) the output will be a narrow spike for each TOP+1 timer clock cycle. Setting the
OCR1x equal to TOP will result in a constant high or low output (depending on the polar-
ity of the output set by the COM1x1:0 bits.)
A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved
by setting OC1A to toggle its logical level on each Compare Match (COM1A1:0 = 1).
This applies only if OCR1A is used to define the TOP value (WGM1 = 15). The wave-
form generated will have a maximum frequency of f
zero (0x0000). This feature is similar to the OC1A toggle in CTC mode, except the dou-
ble buffer feature of the output compare unit is enabled in the fast PWM mode.
f
OCnxPWM
=
---------------------------------- -
N
(
f
clk_I/O
1
+
OC
TOP
1
A
= f
)
clk_I/O
/2 when OCR1A is set to
2512K–AVR–01/10

Related parts for ATmega8515