ATmega8515 Atmel Corporation, ATmega8515 Datasheet - Page 131

no-image

ATmega8515

Manufacturer Part Number
ATmega8515
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega8515

Flash (kbytes)
8 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
35
Ext Interrupts
3
Usb Speed
No
Usb Interface
No
Spi
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
0.5
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
3
Input Capture Channels
1
Pwm Channels
3
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA8515
Manufacturer:
ATMEL
Quantity:
5 510
Part Number:
ATMEGA8515
Manufacturer:
NS
Quantity:
5 510
Part Number:
ATMEGA8515
Manufacturer:
AT
Quantity:
20 000
Part Number:
ATmega8515-16AC
Manufacturer:
MOT
Quantity:
3 450
Part Number:
ATmega8515-16AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8515-16AC
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega8515-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8515-16AI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega8515-16AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8515-16AU
Manufacturer:
ATMEL
Quantity:
4 500
Part Number:
ATmega8515-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8515-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega8515-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8515-16JU
Quantity:
1 831
Part Number:
ATmega8515-16PU
Manufacturer:
AT
Quantity:
20 000
SS Pin Functionality
Slave Mode
Master Mode
SPI Control Register – SPCR
2512K–AVR–01/10
When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When
SS is held low, the SPI is activated, and MISO becomes an output if configured so by
the user. All other pins are inputs. When SS is driven high, all pins are inputs, and the
SPI is passive, which means that it will not receive incoming data. Note that the SPI
logic will be reset once the SS pin is driven high.
The SS pin is useful for packet/byte synchronization to keep the Slave bit counter syn-
chronous with the master clock generator. When the SS pin is driven high, the SPI Slave
will immediately reset the send and receive logic, and drop any partially received data in
the Shift Register.
When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine
the direction of the SS pin.
If SS is configured as an output, the pin is a general output pin which does not affect the
SPI system. Typically, the pin will be driving the SS pin of the SPI Slave.
If SS is configured as an input, it must be held high to ensure Master SPI operation. If
the SS pin is driven low by peripheral circuitry when the SPI is configured as a Master
with the SS pin defined as an input, the SPI system interprets this as another Master
selecting the SPI as a Slave and starting to send data to it. To avoid bus contention, the
SPI system takes the following actions:
1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a
2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in
Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a
possibility that SS is driven low, the interrupt should always check that the MSTR bit is
still set. If the MSTR bit has been cleared by a Slave Select, it must be set by the user to
re-enable SPI Master mode.
• Bit 7 – SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set
and the if the Global Interrupt Enable bit in SREG is set.
• Bit 6 – SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable
any SPI operations.
• Bit 5 – DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.
When the DORD bit is written to zero, the MSB of the data word is transmitted first.
• Bit 4 – MSTR: Master/Slave Select
This bit selects Master SPI mode when written to one, and Slave SPI mode when written
logic zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will
Bit
Read/Write
Initial Value
result of the SPI becoming a Slave, the MOSI and SCK pins become inputs.
SREG is set, the interrupt routine will be executed.
SPIE
R/W
7
0
SPE
R/W
6
0
DORD
R/W
5
0
MSTR
R/W
4
0
CPOL
R/W
3
0
CPHA
R/W
2
0
ATmega8515(L)
SPR1
R/W
1
0
SPR0
R/W
0
0
SPCR
131

Related parts for ATmega8515