ATUC64L4U Atmel Corporation, ATUC64L4U Datasheet - Page 593

no-image

ATUC64L4U

Manufacturer Part Number
ATUC64L4U
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATUC64L4U

Flash (kbytes)
64 Kbytes
Pin Count
48
Max. Operating Frequency
50 MHz
Cpu
32-bit AVR
# Of Touch Channels
17
Hardware Qtouch Acquisition
Yes
Max I/o Pins
36
Ext Interrupts
36
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device
Spi
1
Twi (i2c)
2
Uart
4
Lin
4
Ssc
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
12
Adc Speed (ksps)
460
Analog Comparators
8
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
16
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.62 to 3.6
Operating Voltage (vcc)
1.62 to 3.6
Fpu
No
Mpu / Mmu
Yes / No
Timers
6
Output Compare Channels
18
Input Capture Channels
12
Pwm Channels
35
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATUC64L4U-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATUC64L4U-AUT
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATUC64L4U-D3HR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATUC64L4U-H
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATUC64L4U-U
Manufacturer:
ATMEL
Quantity:
20
Part Number:
ATUC64L4U-ZUT
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
24.5.3
24.5.4
24.5.5
24.5.6
24.6
24.6.1
24.6.2
32142A–12/2011
Functional Description
Clocks
DMA
Interrupts
Debug Operation
Initialization
Basic Operation
The clock for the IISC bus interface (CLK_IISC) is generated by the Power Manager. This clock
is enabled at reset, and can be disabled in the Power Manager. It is recommended to disable the
IISC before disabling the clock, to avoid freezing the IISC in an undefined state.
One of the generic clocks is connected to the IISC. The generic clock (GCLK_IISC) can be set to
a wide range of frequencies and clock sources. The GCLK_IISC must be enabled and config-
ured before use. Refer to the module configuration section for details on the GCLK_IISC used
for the IISC. The frequency for this clock has to be set as described in Table.
The IISC DMA handshake interfaces are connected to the Peripheral DMA Controller. Using the
IISC DMA functionality requires the Peripheral DMA Controller to be programmed first.
The IISC interrupt line is connected to the Interrupt Controller. Using the IISC interrupt requires
the Interrupt Controller to be programmed first.
When an external debugger forces the CPU into debug mode, the IISC continues normal opera-
tion. If this module is configured in a way that requires it to be periodically serviced by the CPU
through interrupt requests or similar, improper operation or data loss may result during
debugging.
The IISC features a Receiver, a Transmitter, and, for Master and Controller modes, a Clock
Generator. Receiver and Transmitter share the same Serial Clock and Word Select.
Before enabling the IISC, the chosen configuration must be written to the Mode Register (MR).
The IMCKMODE, MODE, and DATALENGTH fields in the MR register must be written. If the
IMCKMODE field is written as one, then the IMCKFS field should be written with the chosen
ratio, as described in
Once the Mode Register has been written, the IISC Clock Generator, Receiver, and Transmitter
can be enabled by writing a one to the CKEN, RXEN, and TXEN bits in the Control Register
(CR). The Clock Generator can be enabled alone, in Controller Mode, to output clocks to the
IMCK, ISCK, and IWS pins. The Clock Generator must also be enabled if the Receiver or the
Transmitter is enabled.
The Clock Generator, Receiver, and Transmitter can be disabled independently by writing a one
to CR.CXDIS, CR.RXDIS and/or CR.TXDIS respectively. Once requested to stop, they will only
stop when the transmission of the pending frame transmission will be completed.
The Receiver can be operated by reading the Receiver Holding Register (RHR), whenever the
Receive Ready (RXRDY) bit in the Status Register (SR) is set. Successive values read from
RHR will correspond to the samples from the left and right audio channels for the successive
frames.
Section 24.6.5 ”Serial Clock and Word Select Generation” on page
ATUC64/128/256L3/4U
595.
593

Related parts for ATUC64L4U