PIC18F26K20-E/SO Microchip Technology, PIC18F26K20-E/SO Datasheet - Page 55

IC PIC MCU FLASH 16KX16 28-SOIC

PIC18F26K20-E/SO

Manufacturer Part Number
PIC18F26K20-E/SO
Description
IC PIC MCU FLASH 16KX16 28-SOIC
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr

Specifications of PIC18F26K20-E/SO

Program Memory Type
FLASH
Program Memory Size
64KB (32K x 16)
Package / Case
28-SOIC (7.5mm Width)
Core Processor
PIC
Core Size
8-Bit
Speed
48MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
24
Eeprom Size
1K x 8
Ram Size
3.8K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 3.6 V
Data Converters
A/D 11x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
3936 B
Interface Type
CCP/ECCP/EUSART/I2C/MSSP/SPI
Maximum Clock Frequency
64 MHz
Number Of Programmable I/os
25
Number Of Timers
4
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, DV164136
Minimum Operating Temperature
- 40 C
On-chip Adc
11-ch x 10-bit
Package
28SOIC W
Device Core
PIC
Family Name
PIC18
Maximum Speed
64 MHz
Operating Supply Voltage
2.5|3.3 V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC164112 - VOLTAGE LIMITER MPLAB ICD2 VPPAC164303 - MODULE SKT FOR PM3 64TQFP
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Company:
Part Number:
PIC18F26K20-E/SO
Quantity:
702
4.5
PIC18F2XK20/4XK20
separate on-chip timers that help regulate the
Power-on Reset process. Their main function is to
ensure that the device clock is stable before code is
executed. These timers are:
• Power-up Timer (PWRT)
• Oscillator Start-up Timer (OST)
• PLL Lock Time-out
4.5.1
The
PIC18F2XK20/4XK20 devices is an 11-bit counter
which uses the LFINTOSC source as the clock input.
This
2048 x 32 s = 65.6 ms. While the PWRT is counting,
the device is held in Reset.
The power-up time delay depends on the LFINTOSC
clock and will vary from chip-to-chip due to temperature
and process variation. See DC parameter 33 for
details.
The PWRT is enabled by clearing the PWRTEN
Configuration bit.
4.5.2
The Oscillator Start-up Timer (OST) provides a 1024
oscillator cycle (from OSC1 input) delay after the
PWRT delay is over (parameter 33). This ensures that
the crystal oscillator or resonator has started and
stabilized.
TABLE 4-2:
 2010 Microchip Technology Inc.
HSPLL
HS, XT, LP
EC, ECIO
RC, RCIO
INTIO1, INTIO2
Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.
Configuration
yields
2: 2 ms is the nominal time required for the PLL to lock.
Oscillator
Device Reset Timers
Power-up
POWER-UP TIMER (PWRT)
OSCILLATOR START-UP TIMER
(OST)
an
TIME-OUT IN VARIOUS SITUATIONS
approximate
devices
Timer
66 ms
66 ms
(1)
PWRTEN = 0
+ 1024 T
incorporate
time
(1)
66 ms
66 ms
66 ms
(PWRT)
+ 1024 T
interval
Power-up
OSC
(1)
(1)
(1)
+ 2 ms
OSC
three
of
of
(2)
(2)
and Brown-out
The OST time-out is invoked only for XT, LP, HS and
HSPLL modes and only on Power-on Reset, or on exit
from all power-managed modes that stop the external
oscillator.
4.5.3
With the PLL enabled in its PLL mode, the time-out
sequence following a Power-on Reset is slightly
different from other oscillator modes. A separate timer
is used to provide a fixed time-out that is sufficient for
the PLL to lock to the main oscillator frequency. This
PLL lock time-out (T
the oscillator start-up time-out.
4.5.4
On power-up, the time-out sequence is as follows:
1.
2.
The total time-out will vary based on oscillator
configuration and the status of the PWRT. Figure 4-3,
Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 all
depict time-out sequences on power-up, with the
Power-up Timer enabled and the device operating in
HS Oscillator mode. Figures 4-3 through 4-6 also
apply to devices operating in XT or LP modes. For
devices in RC mode and with the PWRT disabled, on
the other hand, there will be no time-out at all.
Since the time-outs occur from the POR pulse, if MCLR
is kept low long enough, all time-outs will expire, after
which, bringing MCLR high will allow program
execution to begin immediately (Figure 4-5). This is
useful for testing purposes or to synchronize more than
one PIC18FXXK20 device operating in parallel.
PIC18F2XK20/4XK20
1024 T
PWRTEN = 1
After the POR pulse has cleared, PWRT time-out
is invoked (if enabled).
Then, the OST is activated.
1024 T
OSC
PLL LOCK TIME-OUT
TIME-OUT SEQUENCE
+ 2 ms
OSC
(2)
PLL
) is typically 2 ms and follows
Power-Managed Mode
1024 T
1024 T
Exit from
DS41303G-page 55
OSC
+ 2 ms
OSC
(2)

Related parts for PIC18F26K20-E/SO