ATA6603P-PLQW Atmel, ATA6603P-PLQW Datasheet - Page 270

MCU W/LIN TXRX REG WTCHDG 48-QFN

ATA6603P-PLQW

Manufacturer Part Number
ATA6603P-PLQW
Description
MCU W/LIN TXRX REG WTCHDG 48-QFN
Manufacturer
Atmel
Series
AVR® ATA66 LIN-SBCr
Datasheet

Specifications of ATA6603P-PLQW

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
23
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
48-QFN Exposed Pad
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATA6603P-PLQW
Manufacturer:
ATMEL
Quantity:
2 000
Part Number:
ATA6603P-PLQW
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
4.21.5
4.21.5.1
270
ATA6602/ATA6603
ADC Noise Canceler
Analog Input Circuitry
If the user has a fixed voltage source connected to the AREF pin, the user may not use the other
reference voltage options in the application, as they will be shorted to the external voltage. If no
external voltage is applied to the AREF pin, the user may switch between AV
erence selection. The first ADC conversion result after switching reference voltage source may
be inaccurate, and the user is advised to discard this result.
The ADC features a noise canceler that enables conversion during sleep mode to reduce noise
induced from the CPU core and other I/O peripherals. The noise canceler can be used with ADC
Noise Reduction and Idle mode. To make use of this feature, the following procedure should be
used:
Note that the ADC will not be automatically turned off when entering other sleep modes than Idle
mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before enter-
ing such sleep modes to avoid excessive power consumption.
The analog input circuitry for single ended channels is illustrated in
analog source applied to ADCn is subjected to the pin capacitance and input leakage of that pin,
regardless of whether that channel is selected as input for the ADC. When the channel is
selected, the source must drive the S/H capacitor through the series resistance (combined resis-
tance in the input path).
The ADC is optimized for analog signals with an output impedance of approximately 10 k or
less. If such a source is used, the sampling time will be negligible. If a source with higher imped-
ance is used, the sampling time will depend on how long time the source needs to charge the
S/H capacitor, with can vary widely. The user is recommended to only use low impedant sources
with slowly varying signals, since this minimizes the required charge transfer to the S/H
capacitor.
Signal components higher than the Nyquist frequency (f
kind of channels, to avoid distortion from unpredictable signal convolution. The user is advised
to remove high frequency components with a low-pass filter before applying the signals as
inputs to the ADC.
a. Make sure that the ADC is enabled and is not busy converting. Single Conversion
b. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion
c. If no other interrupts occur before the ADC conversion completes, the ADC inter-
mode must be selected and the ADC conversion complete interrupt must be
enabled.
once the CPU has been halted.
rupt will wake up the CPU and execute the ADC Conversion Complete interrupt
routine. If another interrupt wakes up the CPU before the ADC conversion is com-
plete, that interrupt will be executed, and an ADC Conversion Complete interrupt
request will be generated when the ADC conversion completes. The CPU will
remain in active mode until a new sleep command is executed.
ADC
/2) should not be present for either
Figure 4-107 on page 271
CC
and 1.1V as ref-
4921E–AUTO–09/09
An

Related parts for ATA6603P-PLQW