PIC18LF4455-I/PT Microchip Technology, PIC18LF4455-I/PT Datasheet - Page 260

IC PIC MCU FLASH 12KX16 44TQFP

PIC18LF4455-I/PT

Manufacturer Part Number
PIC18LF4455-I/PT
Description
IC PIC MCU FLASH 12KX16 44TQFP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18LF4455-I/PT

Core Size
8-Bit
Program Memory Size
24KB (12K x 16)
Core Processor
PIC
Speed
48MHz
Connectivity
I²C, SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
35
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2 V ~ 5.5 V
Data Converters
A/D 13x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
44-TQFP, 44-VQFP
Controller Family/series
PIC18
No. Of I/o's
36
Eeprom Memory Size
256Byte
Ram Memory Size
2048Byte
Cpu Speed
48MHz
No. Of Timers
4
Processor Series
PIC18LF
Core
PIC
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
SPI, I2C, EAUSART
Maximum Clock Frequency
48 MHz
Number Of Programmable I/os
35
Number Of Timers
4
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, ICE4000, DV164136, DM163025
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 13 Channel
Package
44TQFP
Device Core
PIC
Family Name
PIC18
Maximum Speed
48 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18LF4455-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18LF4455-I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
PIC18F2455/2550/4455/4550
20.2.4
During Sleep mode, all clocks to the EUSART are
suspended. Because of this, the Baud Rate Generator
is inactive and a proper byte reception cannot be per-
formed. The auto-wake-up feature allows the controller
to wake-up due to activity on the RX/DT line while the
EUSART is operating in Asynchronous mode.
The auto-wake-up feature is enabled by setting the
WUE bit (BAUDCON<1>). Once set, the typical receive
sequence on RX/DT is disabled and the EUSART
remains in an Idle state, monitoring for a wake-up event
independent of the CPU mode. A wake-up event
consists of a high-to-low transition on the RX/DT line.
(This coincides with the start of a Sync Break or a
Wake-up Signal character for the LIN protocol.)
Following a wake-up event, the module generates an
RCIF interrupt. The interrupt is generated synchro-
nously to the Q clocks in normal operating modes
(Figure 20-8) and asynchronously, if the device is in
Sleep mode (Figure 20-9). The interrupt condition is
cleared by reading the RCREG register.
The WUE bit is automatically cleared once a low-to-
high transition is observed on the RX line following the
wake-up event. At this point, the EUSART module is in
Idle mode and returns to normal operation. This signals
to the user that the Sync Break event is over.
20.2.4.1
Since auto-wake-up functions by sensing rising edge
transitions on RX/DT, information with any state
changes before the Stop bit may signal a false End-Of-
FIGURE 20-8:
FIGURE 20-9:
DS39632E-page 258
Note 1:
Note 1:
RX/DT Line
RX/DT Line
WUE bit
WUE bit
OSC1
2:
OSC1
RCIF
RCIF
(2)
(1)
The EUSART remains in Idle while the WUE bit is set.
If the wake-up event requires long oscillator warm-up time, the auto-clear of the WUE bit can occur before the oscillator is ready. This
sequence should not depend on the presence of Q clocks.
The EUSART remains in Idle while the WUE bit is set.
AUTO-WAKE-UP ON SYNC
BREAK CHARACTER
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Special Considerations Using
Auto-Wake-up
Bit set by user
Bit set by user
Sleep Command Executed
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP
Q1
Sleep Ends
Character and cause data or framing errors. To work
properly, therefore, the initial character in the trans-
mission must be all ‘0’s. This can be 00h (8 bits) for
standard RS-232 devices or 000h (12 bits) for LIN bus.
Oscillator start-up time must also be considered,
especially in applications using oscillators with longer
start-up intervals (i.e., XT or HS mode). The Sync
Break (or Wake-up Signal) character must be of
sufficient length and be followed by a sufficient interval
to allow enough time for the selected oscillator to start
and provide proper initialization of the EUSART.
20.2.4.2
The timing of WUE and RCIF events may cause some
confusion when it comes to determining the validity of
received data. As noted, setting the WUE bit places the
EUSART in an Idle mode. The wake-up event causes a
receive interrupt by setting the RCIF bit. The WUE bit is
cleared after this when a rising edge is seen on RX/DT.
The interrupt condition is then cleared by reading the
RCREG register. Ordinarily, the data in RCREG will be
dummy data and should be discarded.
The fact that the WUE bit has been cleared (or is still
set) and the RCIF flag is set should not be used as an
indicator of the integrity of the data in RCREG. Users
should consider implementing a parallel method in
firmware to verify received data integrity.
To assure that no actual data is lost, check the RCIDL
bit to verify that a receive operation is not in process. If
a receive operation is not occurring, the WUE bit may
then be set just prior to entering the Sleep mode.
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Cleared due to user read of RCREG
Cleared due to user read of RCREG
Special Considerations Using
the WUE Bit
© 2009 Microchip Technology Inc.
Note 1
Auto-Cleared
Auto-Cleared

Related parts for PIC18LF4455-I/PT