AT32UC3A1128-AUT Atmel, AT32UC3A1128-AUT Datasheet - Page 388

no-image

AT32UC3A1128-AUT

Manufacturer Part Number
AT32UC3A1128-AUT
Description
IC MCU AVR32 128KB FLASH 100TQFP
Manufacturer
Atmel
Series
AVR®32 UC3r
Datasheets

Specifications of AT32UC3A1128-AUT

Core Processor
AVR
Core Size
32-Bit
Speed
66MHz
Connectivity
Ethernet, I²C, SPI, SSC, UART/USART, USB OTG
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
69
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Ram Size
32K x 8
Voltage - Supply (vcc/vdd)
1.65 V ~ 1.95 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-TQFP, 100-VQFP
Controller Family/series
AT32UC3A
No. Of I/o's
69
Ram Memory Size
32KB
Cpu Speed
66MHz
No. Of Timers
1
Rohs Compliant
Yes
Processor Series
AT32UC3x
Core
AVR32
Data Bus Width
32 bit
Data Ram Size
32 KB
Interface Type
2-Wire, RS-485, SPI, USART
Maximum Clock Frequency
66 MHz
Number Of Programmable I/os
69
Number Of Timers
3
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR32, EWAVR32-BL, KSK-EVK1100-PL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT, ATEXTWIFI, ATEVK1100, ATEVK1105
Minimum Operating Temperature
- 40 C
Package
100TQFP
Device Core
AVR32
Family Name
AT32
Maximum Speed
66 MHz
Operating Supply Voltage
1.8|3.3 V
For Use With
ATAVRONEKIT - KIT AVR/AVR32 DEBUGGER/PROGRMMR770-1008 - ISP 4PORT ATMEL AVR32 MCU SPIATSTK600-TQFP100 - STK600 SOCKET/ADAPTER 100-TQFPATEVK1100 - KIT DEV/EVAL FOR AVR32 AT32UC3A
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT32UC3A1128-AUT
Manufacturer:
Atmel
Quantity:
10 000
27.6.5.4
27.6.6
27.6.6.1
32058J–AVR32–04/11
Data Float Wait States
Read to Write Wait State
READ_MODE
Due to an internal mechanism, a wait cycle is always inserted between consecutive read and
write SMC accesses.
This wait cycle is referred to as a read to write wait state in this document.
This wait cycle is applied in addition to chip select and reload user configuration wait states
when they are to be inserted. See
Some memory devices are slow to release the external bus. For such devices, it is necessary to
add wait states (data float wait states) after a read access:
• before starting a read access to a different external memory
• before starting a write access to the same device or to a different external one.
The Data Float Output Time (t
TDF_CYCLES field of the MODE register for the corresponding chip select. The value of
TDF_CYCLES indicates the number of data float wait cycles (between 0 and 15) before the
external device releases the bus, and represents the time allowed for the data output to go to
high impedance after the memory is disabled.
Data float wait states do not delay internal memory accesses. Hence, a single access to an
external memory with long t
memory.
The data float wait states management depends on the READ_MODE and the TDF_MODE
fields of the MODE register for the corresponding chip select.
Setting the READ_MODE to 1 indicates to the SMC that the NRD signal is responsible for turn-
ing off the tri-state buffers of the external memory device. The Data Float Period then begins
after the rising edge of the NRD signal and lasts TDF_CYCLES MCK cycles.
When the read operation is controlled by the NCS signal (READ_MODE = 0), the TDF field gives
the number of MCK cycles during which the data bus remains busy after the rising edge of NCS.
Figure 27-21
assuming a data float period of 2 cycles (TDF_CYCLES = 2).
ation when controlled by NCS (READ_MODE = 0) and the TDF_CYCLES parameter equals 3.
illustrates the Data Float Period in NRD-controlled mode (READ_MODE =1),
DF
will not slow down the execution of a program from internal
DF
Figure 27-17 on page
) for each external memory device is programmed in the
384.
Figure 27-22
shows the read oper-
AT32UC3A
388

Related parts for AT32UC3A1128-AUT