ATMEGA2560R231-CU Atmel, ATMEGA2560R231-CU Datasheet - Page 249

no-image

ATMEGA2560R231-CU

Manufacturer Part Number
ATMEGA2560R231-CU
Description
BUNDLE ATMEGA2560/RF231 PBGA
Manufacturer
Atmel
Datasheet

Specifications of ATMEGA2560R231-CU

Frequency
2.4GHz
Modulation Or Protocol
802.15.4 Zigbee, 6LoWPAN, RF4CE, SP100, WirelessHART™, ISM
Data Interface
PCB, Surface Mount
Memory Size
256kB Flash, 4kB EEPROM, 8kB RAM
Antenna Connector
PCB, Surface Mount
Package / Case
100-CBGA and 32-QFN
Processor Series
ATMEGA256x
Core
AVR8
Data Bus Width
8 bit
Program Memory Type
Flash
Program Memory Size
256 KB
Data Ram Size
8 KB
Development Tools By Supplier
ATAVRRZ541, ATAVRRAVEN, ATAVRRZRAVEN
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Voltage - Supply
-
Power - Output
-
Operating Temperature
-
Applications
-
Sensitivity
-
Data Rate - Maximum
-
Current - Transmitting
-
Current - Receiving
-
Lead Free Status / Rohs Status
 Details
23.6
Figure 23-10. Interfacing the Application to the TWI in a Typical Transmission
2549M–AVR–09/10
Using the TWI
writes to TWCR to
TWI bus
transmission of
1. Application
START condition sent
Status code indicates
START
initiate
2. TWINT set.
START
TWDR, and loads appropriate control
3. Check TWSR to see if START was
signals into TWCR, makin sure that
sent. Application loads SLA+W into
The TWINT Flag is set in the following situations:
The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like
reception of a byte or transmission of a START condition. Because the TWI is interrupt-based,
the application software is free to carry on other operations during a TWI byte transfer. Note that
the TWI Interrupt Enable (TWIE) bit in TWCR together with the Global Interrupt Enable bit in
SREG allow the application to decide whether or not assertion of the TWINT Flag should gener-
ate an interrupt request. If the TWIE bit is cleared, the application must poll the TWINT Flag in
order to detect actions on the TWI bus.
When the TWINT Flag is asserted, the TWI has finished an operation and awaits application
response. In this case, the TWI Status Register (TWSR) contains a value indicating the current
state of the TWI bus. The application software can then decide how the TWI should behave in
the next TWI bus cycle by manipulating the TWCR and TWDR Registers.
Figure 23-10
this example, a Master wishes to transmit a single data byte to a Slave. This description is quite
abstract, a more detailed explanation follows later in this section. A simple code example imple-
menting the desired behavior is also presented.
and TWSTA is written to zero.
TWINT is written to one,
After the TWI has transmitted a START/REPEATED START condition.
After the TWI has transmitted SLA+R/W.
After the TWI has transmitted an address byte.
After the TWI has lost arbitration.
After the TWI has been addressed by own slave address or general call.
After the TWI has received a data byte.
After a STOP or REPEATED START has been received while still addressed as a Slave.
When a bus error has occurred due to an illegal START or STOP condition.
SLA+W
is a simple example of how the application can interface to the TWI hardware. In
Status code indicates
SLA+W sent, ACK
4. TWINT set.
received
A
Application loads data into TWDR, and
5. Check TWSR to see if SLA+W was
loads appropriate control signals into
ATmega640/1280/1281/2560/2561
TWCR, making sure that TWINT is
sent and ACK received.
written to one
Data
data sent, ACK received
Status code indicates
6. TWINT set.
A
making sure that TWINT is written to one
7. Check TWSR to see if data was sent
Application loads appropriate control
signals to send STOP into TWCR,
STOP
and ACK received.
TWINT set
Indicates
249

Related parts for ATMEGA2560R231-CU