PIC18F2550T-I/SO Microchip Technology, PIC18F2550T-I/SO Datasheet - Page 214

no-image

PIC18F2550T-I/SO

Manufacturer Part Number
PIC18F2550T-I/SO
Description
IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,SOP,28PIN,PLASTIC
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F2550T-I/SO

Rohs Compliant
YES
Core Processor
PIC
Core Size
8-Bit
Speed
48MHz
Connectivity
I²C, SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
24
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 10x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-SOIC (7.5mm Width)
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
SPI, I2C, EAUSART
Maximum Clock Frequency
48 MHz
Number Of Programmable I/os
24
Number Of Timers
4
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, ICE4000, DM163025, DV164136
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 10 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
I3-DB18F4550 - BOARD DAUGHTER ICEPIC3DM163025 - PIC DEM FULL SPEED USB DEMO BRD
Lead Free Status / Rohs Status
 Details
operation. Four mode selection bits (SSPCON1<3:0>)
PIC18F2455/2550/4455/4550
19.4.2
The MSSP module functions are enabled by setting
MSSP Enable bit, SSPEN (SSPCON1<5>).
The SSPCON1 register allows control of the I
allow one of the following I
• I
• I
• I
• I
• I
• I
Selection of any I
forces the SCL and SDA pins to be open-drain,
provided these pins are programmed as inputs by
setting the appropriate TRISC or TRISD bits. To ensure
proper operation of the module, pull-up resistors must
be provided externally to the SCL and SDA pins.
19.4.3
In Slave mode, the SCL and SDA pins must be
configured as inputs (TRISC<4:3> set). The MSSP
module will override the input state with the output data
when required (slave-transmitter).
The I
interrupt on an address match. Address masking will
allow the hardware to generate an interrupt for more
than one address (up to 31 in 7-bit addressing and up
to 63 in 10-bit addressing). Through the mode select
bits, the user can also choose to interrupt on Start and
Stop bits.
When an address is matched, or the data transfer after
an address match is received, the hardware auto-
matically will generate the Acknowledge (ACK) pulse
and load the SSPBUF register with the received value
currently in the SSPSR register.
Any combination of the following conditions will cause
the MSSP module not to give this ACK pulse:
• The Buffer Full bit, BF (SSPSTAT<0>), was set
• The overflow bit, SSPOV (SSPCON1<6>), was
In this case, the SSPSR register value is not loaded
into the SSPBUF, but bit, SSPIF, is set. The BF bit is
cleared by reading the SSPBUF register, while bit,
SSPOV, is cleared through software.
The SCL clock input must have a minimum high and
low for proper operation. The high and low times of the
I
MSSP module, are shown in timing parameter 100 and
parameter 101.
DS39632E-page 212
2
C specification, as well as the requirement of the
Stop bit interrupts enabled
Stop bit interrupts enabled
Idle
before the transfer was received.
set before the transfer was received.
2
2
2
2
2
2
C Master mode, clock
C Slave mode (7-bit address)
C Slave mode (10-bit address)
C Slave mode (7-bit address) with Start and
C Slave mode (10-bit address) with Start and
C Firmware Controlled Master mode, slave is
2
C Slave mode hardware will always generate an
OPERATION
SLAVE MODE
2
C mode with the SSPEN bit set
2
C modes to be selected:
2
C
19.4.3.1
Once the MSSP module has been enabled, it waits for
a Start condition to occur. Following the Start condition,
the 8 bits are shifted into the SSPSR register. All
incoming bits are sampled with the rising edge of the
clock (SCL) line. The value of register SSPSR<7:1> is
compared to the value of the SSPADD register. The
address is compared on the falling edge of the eighth
clock (SCL) pulse. If the addresses match and the BF
and SSPOV bits are clear, the following events occur:
1.
2.
3.
4.
In 10-Bit Addressing mode, two address bytes need to
be received by the slave. The five Most Significant bits
(MSbs) of the first address byte specify if this is a 10-bit
address. Bit R/W (SSPSTAT<2>) must specify a
write so the slave device will receive the second
address byte. For a 10-bit address, the first byte
would equal ‘11110 A9 A8 0’, where ‘A9’ and ‘A8’
are the two MSbs of the address. The sequence of
events for 10-bit addressing is as follows, with steps
7 through 9 for the slave-transmitter:
1.
2.
3.
4.
5.
6.
7.
8.
9.
The SSPSR register value is loaded into the
SSPBUF register.
The Buffer Full bit, BF, is set.
An ACK pulse is generated.
The MSSP Interrupt Flag bit, SSPIF, is set (and
interrupt is generated, if enabled) on the falling
edge of the ninth SCL pulse.
Receive first (high) byte of address (bits SSPIF,
BF and UA (SSPSTAT<1>) are set on address
match).
Update the SSPADD register with second (low)
byte of address (clears bit, UA, and releases the
SCL line).
Read the SSPBUF register (clears bit, BF) and
clear flag bit, SSPIF.
Receive second (low) byte of address (bits,
SSPIF, BF and UA, are set).
Update the SSPADD register with the first (high)
byte of address. If match releases SCL line, this
will clear bit, UA.
Read the SSPBUF register (clears bit, BF) and
clear flag bit, SSPIF.
Receive Repeated Start condition.
Receive first (high) byte of address (bits, SSPIF
and BF, are set).
Read the SSPBUF register (clears bit, BF) and
clear flag bit, SSPIF.
Addressing
© 2009 Microchip Technology Inc.

Related parts for PIC18F2550T-I/SO