LTC2234IUK Linear Technology, LTC2234IUK Datasheet - Page 14

IC ADC 10BIT 135MSPS SAMPL 48QFN

LTC2234IUK

Manufacturer Part Number
LTC2234IUK
Description
IC ADC 10BIT 135MSPS SAMPL 48QFN
Manufacturer
Linear Technology
Datasheet

Specifications of LTC2234IUK

Number Of Bits
10
Sampling Rate (per Second)
135M
Data Interface
Parallel
Number Of Converters
1
Power Dissipation (max)
680mW
Voltage Supply Source
Single Supply
Operating Temperature
-40°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
48-WFQFN, Exposed Pad
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LTC2234IUK#PBF
Manufacturer:
Linear Technology
Quantity:
135
APPLICATIO S I FOR ATIO
LTC2234
NMOS transistors. The capacitors shown attached to each
input (C
tance associated with each input.
During the sample phase when ENC is low, the transistors
connect the analog inputs to the sampling capacitors and
they charge to, and track the differential input voltage.
When ENC transitions from low to high, the sampled input
voltage is held on the sampling capacitors. During the hold
phase when ENC is high, the sampling capacitors are
disconnected from the input and the held voltage is passed
to the ADC core for processing. As ENC transitions from
high to low, the inputs are reconnected to the sampling
capacitors to acquire a new sample. Since the sampling
capacitors still hold the previous sample, a charging glitch
proportional to the change in voltage between samples will
be seen at this time. If the change between the last sample
and the new sample is small, the charging glitch seen at
the input will be small. If the input change is large, such as
the change seen with input frequencies near Nyquist, then
a larger charging glitch will be seen.
Single-Ended Input
For cost sensitive applications, the analog inputs can be
driven single-ended. With a single-ended input the har-
monic distortion and INL will degrade, but the SNR and
DNL will remain unchanged. For a single-ended input, A
should be driven with the input signal and A
connected to 1.6V or V
Common Mode Bias
For optimal performance the analog inputs should be
driven differentially. Each input should swing ±0.5V for
the 2V range or ±0.25V for the 1V range, around a
common mode voltage of 1.6V. The V
44) may be used to provide the common mode bias level.
V
to set the DC input level or as a reference level to an op amp
differential driver circuit. The V
ground close to the ADC with a 2.2µF or greater capacitor.
14
CM
can be tied directly to the center tap of a transformer
PARASITIC
) are the summation of all other capaci-
U
CM
U
.
CM
pin must be bypassed to
W
CM
output pin (Pin
IN
U
should be
IN
+
Input Drive Impedance
As with all high performance, high speed ADCs, the
dynamic performance of the LTC2234 can be influenced
by the input drive circuitry, particularly the second and
third harmonics. Source impedance and input reactance
can influence SFDR. At the falling edge of ENC, the sample-
and-hold circuit will connect the 1.6pF sampling capacitor
to the input pin and start the sampling period. The sam-
pling period ends when ENC rises, holding the sampled
input on the sampling capacitor. Ideally the input circuitry
should be fast enough to fully charge the sampling capaci-
tor during the sampling period 1/(2F
this is not always possible and the incomplete settling may
degrade the SFDR. The sampling glitch has been designed
to be as linear as possible to minimize the effects of
incomplete settling.
For the best performance, it is recommended to have a
source impedance of 100Ω or less for each input. The
source impedance should be matched for the differential
inputs. Poor matching will result in higher even order
harmonics, especially the second.
Input Drive Circuits
Figure 3 shows the LTC2234 being driven by an RF
transformer with a center tapped secondary. The second-
ary center tap is DC biased with V
ANALOG
INPUT
Figure 3. Single-Ended to Differential Conversion
0.1µF
T1 = MA/COM ETC1-1T
RESISTORS, CAPACITORS
ARE 0402 PACKAGE SIZE
1:1
T1
Using a Transformer
25Ω
25Ω
0.1µF
25Ω
25Ω
CM
, setting the ADC input
2.2µF
12pF
ENCODE
V
A
A
CM
IN
IN
+
LTC2234
); however,
2234 F03
2234fa

Related parts for LTC2234IUK