DSPIC33FJ128MC506-I/PT Microchip Technology Inc., DSPIC33FJ128MC506-I/PT Datasheet - Page 296

no-image

DSPIC33FJ128MC506-I/PT

Manufacturer Part Number
DSPIC33FJ128MC506-I/PT
Description
DSP, 16-Bit, 128KB Flash, 8KB RAM, 53 I/O, TQFP-64
Manufacturer
Microchip Technology Inc.
Type
DSPr
Datasheet

Specifications of DSPIC33FJ128MC506-I/PT

A/d Inputs
16-Channels, 12-Bit
Comparators
8
Cpu Speed
40 MIPS
Eeprom Memory
0 Bytes
Input Output
53
Interface
CAN, I2C, SPI, UART/USART
Ios
53
Memory Type
Flash
Number Of Bits
16
Package Type
64-pin TQFP
Programmable Memory
128K Bytes
Ram Size
8K Bytes
Timers
9-16-bit, 4-32-bit
Voltage, Range
3-3.6
Lead Free Status / Rohs Status
RoHS Compliant part Electrostatic Device

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC33FJ128MC506-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
dsPIC33F
23.3
For dsPIC33F devices, the WDT is driven by the LPRC
oscillator. When the WDT is enabled, the clock source
is also enabled.
The nominal WDT clock source from LPRC is 32 kHz.
This feeds a prescaler than can be configured for either
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.
The prescaler is set by the WDTPRE Configuration bit.
With a 32 kHz input, the prescaler yields a nominal
WDT time-out period (T
4 ms in 7-bit mode.
A variable postscaler divides down the WDT prescaler
output and allows for a wide range of time-out periods.
The postscaler is controlled by the WDTPOST<3:0>
Configuration bits (FWDT<3:0>) which allow the selec-
tion of a total of 16 settings, from 1:1 to 1:32,768. Using
the prescaler and postscaler, time-out periods ranging
from 1 ms to 131 seconds can be achieved.
The WDT, prescaler and postscaler are reset:
• On any device Reset
• On the completion of a clock switch, whether
• When a PWRSAV instruction is executed
• When the device exits Sleep or Idle mode to
• By a CLRWDT instruction during normal execution
FIGURE 23-2:
DS70165E-page 294
invoked by software (i.e., setting the OSWEN bit
after changing the NOSC bits) or by hardware
(i.e., Fail-Safe Clock Monitor)
(i.e., Sleep or Idle mode is entered)
resume normal operation
Sleep or Idle Mode
New Clock Source
All Device Resets
CLRWDT Instr.
PWRSAV Instr.
Exit Sleep or
Transition to
LPRC Input
Watchdog Timer (WDT)
SWDTEN
Idle Mode
FWDTEN
WDT BLOCK DIAGRAM
WDT
32.768 kHz
) of 1 ms in 5-bit mode, or
WDTPRE
Prescaler
1 ms/4 ms
LPRC Control
Preliminary
Counter
WDT
If the WDT is enabled, it will continue to run during Sleep
or Idle modes. When the WDT time-out occurs, the
device will wake the device and code execution will con-
tinue from where the PWRSAV instruction was executed.
The corresponding SLEEP or IDLE bits (RCON<3,2>) will
need to be cleared in software after the device wakes up.
The WDT flag bit, WDTO (RCON<4>), is not automatically
cleared following a WDT time-out. To detect subsequent
WDT events, the flag must be cleared in software.
The WDT is enabled or disabled by the FWDTEN
Configuration bit in the FWDT Configuration register.
When the FWDTEN Configuration bit is set, the WDT is
always enabled.
The WDT can be optionally controlled in software when
the FWDTEN Configuration bit has been programmed
to ‘0’. The WDT is enabled in software by setting the
SWDTEN control bit (RCON<5>). The SWDTEN con-
trol bit is cleared on any device Reset. The software
WDT option allows the user to enable the WDT for crit-
ical code segments and disable the WDT during
non-critical segments for maximum power savings.
Note:
Note:
WDTPOST<3:0>
Postscaler
The CLRWDT and PWRSAV instructions
clear the prescaler and postscaler counts
when executed.
If the WINDIS bit (FWDT<6>) is cleared, the
CLRWDT instruction should be executed by
the application software only during the last
1/4 of the WDT period. This CLRWDT win-
dow can be determined by using a timer. If
a CLRWDT instruction is executed before
this window, a WDT Reset occurs.
© 2007 Microchip Technology Inc.
Wake from Sleep
WDT Overflow
Reset

Related parts for DSPIC33FJ128MC506-I/PT