ATMEGA169V-1MC Atmel, ATMEGA169V-1MC Datasheet - Page 35

no-image

ATMEGA169V-1MC

Manufacturer Part Number
ATMEGA169V-1MC
Description
IC MCU AVR 16K 1.8V 1MHZ 64-QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA169V-1MC

Core Processor
AVR
Core Size
8-Bit
Speed
1MHz
Connectivity
SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
0°C ~ 70°C
Package / Case
64-MLF®, 64-QFN
For Use With
ATAVRISP2 - PROGRAMMER AVR IN SYSTEMATAVRBFLY - KIT EVALUATION AVR BUTTERFLYATSTK502 - MOD EXPANSION AVR STARTER 500
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Brown-out Detector
Internal Voltage Reference
Watchdog Timer
Port Pins
On-chip Debug System
2514H–AVR–05/03
If the Brown-out Detector is not needed by the application, this module should be turned
off. If the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in
all sleep modes, and hence, always consume power. In the deeper sleep modes, this
will contribute significantly to the total current consumption. Refer to “Brown-out Detec-
tion” on page 39 for details on how to configure the Brown-out Detector.
The Internal Voltage Reference will be enabled when needed by the Brown-out Detec-
tion, the Analog Comparator or the ADC. If these modules are disabled as described in
the sections above, the internal voltage reference will be disabled and it will not be con-
suming power. When turned on again, the user must allow the reference to start up
before the output is used. If the reference is kept on in sleep mode, the output can be
used immediately. Refer to “Internal Voltage Reference” on page 41 for details on the
start-up time.
If the Watchdog Timer is not needed in the application, the module should be turned off.
If the Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence,
always consume power. In the deeper sleep modes, this will contribute significantly to
the total current consumption. Refer to “Watchdog Timer” on page 42 for details on how
to configure the Watchdog Timer.
When entering a sleep mode, all port pins should be configured to use minimum power.
The most important is then to ensure that no pins drive resistive loads. In sleep modes
where both the I/O clock (clk
ers of the device will be disabled. This ensures that no power is consumed by the input
logic when not needed. In some cases, the input logic is needed for detecting wake-up
conditions, and it will then be enabled. Refer to the section “Digital Input Enable and
Sleep Modes” on page 55 for details on which pins are enabled. If the input buffer is
enabled and the input signal is left floating or have an analog signal level close to V
the input buffer will use excessive power.
For analog input pins, the digital input buffer should be disabled at all times. An analog
signal level close to V
mode. Digital input buffers can be disabled by writing to the Digital Input Disable Regis-
ters (DIDR1 and DIDR0). Refer to “Digital Input Disable Register 1 – DIDR1” on page
191 and “Digital Input Disable Register 0 – DIDR0” on page 209 for details.
If the On-chip debug system is enabled by the OCDEN Fuse and the chip enters sleep
mode, the main clock source is enabled, and hence, always consumes power. In the
deeper sleep modes, this will contribute significantly to the total current consumption.
There are three alternative ways to disable the OCD system:
Disable the OCDEN Fuse.
Disable the JTAGEN Fuse.
Write one to the JTD bit in MCUCSR.
CC
/2 on an input pin can cause significant current even in active
I/O
) and the ADC clock (clk
ADC
ATmega169V/L
) are stopped, the input buff-
CC
/2,
35

Related parts for ATMEGA169V-1MC