AT90USB647 Atmel Corporation, AT90USB647 Datasheet - Page 337

no-image

AT90USB647

Manufacturer Part Number
AT90USB647
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of AT90USB647

Flash (kbytes)
64 Kbytes
Pin Count
64
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
48
Ext Interrupts
16
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device + OTG
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
4
Eeprom (bytes)
2048
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
10
Input Capture Channels
1
Pwm Channels
9
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Company:
Part Number:
AT90USB647-16AE
Quantity:
8
Part Number:
AT90USB647-16AU
Manufacturer:
HITACHI
Quantity:
2 000
Part Number:
AT90USB647-AU
Manufacturer:
MURATA
Quantity:
1 000
Part Number:
AT90USB647-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT90USB647-AUR
Manufacturer:
Atmel
Quantity:
1 951
Part Number:
AT90USB647-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT90USB647-MU
Manufacturer:
AAT
Quantity:
18 240
Part Number:
AT90USB647-MUR
Manufacturer:
AD
Quantity:
2 747
26.7
26.7.1
26.8
26.9
7593K–AVR–11/09
On-chip Debug Related Register in I/O Memory
Using the JTAG Programming Capabilities
Bibliography
On-chip Debug Register – OCDR
The OCDR Register provides a communication channel from the running program in the micro-
controller to the debugger. The CPU can transfer a byte to the debugger by writing to this
location. At the same time, an internal flag; I/O Debug Register Dirty – IDRD – is set to indicate
to the debugger that the register has been written. When the CPU reads the OCDR Register the
7 LSB will be from the OCDR Register, while the MSB is the IDRD bit. The debugger clears the
IDRD bit when it has read the information.
In some AVR devices, this register is shared with a standard I/O location. In this case, the OCDR
Register can only be accessed if the OCDEN Fuse is programmed, and the debugger enables
access to the OCDR Register. In all other cases, the standard I/O location is accessed.
Refer to the debugger documentation for further information on how to use this register.
Programming of AVR parts via JTAG is performed via the 4-pin JTAG port, TCK, TMS, TDI, and
TDO. These are the only pins that need to be controlled/observed to perform JTAG program-
ming (in addition to power pins). It is not required to apply 12V externally. The JTAGEN Fuse
must be programmed and the JTD bit in the MCUCR Register must be cleared to enable the
JTAG Test Access Port.
The JTAG programming capability supports:
The Lock bit security is exactly as in parallel programming mode. If the Lock bits LB1 or LB2 are
programmed, the OCDEN Fuse cannot be programmed unless first doing a chip erase. This is a
security feature that ensures no back-door exists for reading out the content of a secured
device.
The details on programming through the JTAG interface and programming specific JTAG
instructions are given in the section
For more information about general Boundary-scan, the following literature can be consulted:
Bit
Read/Write
Initial Value
• Flash programming and verifying.
• EEPROM programming and verifying.
• Fuse programming and verifying.
• Lock bit programming and verifying.
• IEEE: IEEE Std. 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan
• Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-Wesley,
Architecture, IEEE, 1993.
1992.
7
MSB/IDRD
R/W
0
6
R/W
0
5
R/W
0
“Programming via the JTAG Interface” on page
4
R/W
0
3
R/W
0
R/W
2
0
1
R/W
0
AT90USB64/128
0
LSB
R/W
0
OCDR
385.
337

Related parts for AT90USB647