AD9268 Analog Devices, AD9268 Datasheet - Page 32

no-image

AD9268

Manufacturer Part Number
AD9268
Description
16-Bit, 125 MSPS/105 MSPS/80 MSPS, 1.8 V Dual Analog-to-Digital Converter
Manufacturer
Analog Devices
Datasheet

Specifications of AD9268

Resolution (bits)
16bit
# Chan
2
Sample Rate
125MSPS
Interface
Par
Analog Input Type
Diff-Uni
Ain Range
(2Vref) p-p,1 V p-p,2 V p-p
Adc Architecture
Pipelined
Pkg Type
CSP

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD9268-125BCPZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD9268BCPZ-105
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD9268BCPZ-125
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD9268BCPZ-80
Manufacturer:
MITSUBISHI
Quantity:
56
Part Number:
AD9268BCPZ-80
Manufacturer:
ADI/亚德诺
Quantity:
20 000
AD9268
POWER DISSIPATION AND STANDBY MODE
As shown in Figure 81, the power dissipated by the AD9268
varies with its sample rate. In CMOS output mode, the digital
power dissipation is determined primarily by the strength of the
digital drivers and the load on each output bit.
The maximum DRVDD current (IDRVDD) can be calculated as
where N is the number of output bits (32 plus two DCO
outputs, in the case of the AD9268).
This maximum current occurs when every output bit switches on
every clock cycle, that is, a full-scale square wave at the Nyquist
frequency of f
lished by the average number of output bits switching, which is
determined by the sample rate and the characteristics of the
analog input signal.
Reducing the capacitive load presented to the output drivers
reduces digital power consumption. The data in Figure 81 was
taken in LVDS output mode, using the same operating conditions
as those used for the Typical Performance Characteristics.
1.0
0.8
0.6
0.4
0.2
Figure 81. AD9268-125 Power and Current vs. Encode Frequency (LVDS
Figure 82. AD9268-105 Power and Current vs. Encode Frequency (LVDS
0
25
IDRVDD = VDRVDD × C
1.25
1.00
0.75
0.50
0.25
0
25
35
CLK
45
/2. In practice, the DRVDD current is estab-
ENCODE FREQUENCY (MSPS)
50
TOTAL POWER
ENCODE FREQUENCY (MHz)
55
IDRVDD
IAVDD
TOTAL POWER
I
AVDD
Output Mode)
Output Mode)
65
LOAD
75
I
DRVDD
75
× f
CLK
85
× N
100
95
105
0.5
0.4
0.3
0.2
0.1
0
125
0.5
0.4
0.3
0.2
0.1
0
Rev. A | Page 32 of 44
By asserting PDWN (either through the SPI port or by asserting
the PDWN pin high), the AD9268 is placed in power-down
mode. In this state, the ADC typically dissipates 3.3 mW.
During power-down, the output drivers are placed in a high
impedance state. Asserting the PDWN pin low returns the
AD9268 to its normal operating mode.
Low power dissipation in power-down mode is achieved by
shutting down the reference, reference buffer, biasing networks,
and clock. Internal capacitors are discharged when entering power-
down mode and then must be recharged when returning to normal
operation.
When using the SPI port interface, the user can place the ADC
in power-down mode or standby mode. Standby mode allows
the user to keep the internal reference circuitry powered when
faster wake-up times are required.
DIGITAL OUTPUTS
The AD9268 output drivers can be configured to interface with
1.8 V CMOS logic families. The AD9268 can also be configured
for LVDS outputs (standard ANSI or reduced output swing mode)
using a DRVDD supply voltage of 1.8 V.
In CMOS output mode, the output drivers are sized to provide
sufficient output current to drive a wide variety of logic families.
However, large drive currents tend to cause current glitches on
the supplies that may affect converter performance.
Applications requiring the ADC to drive large capacitive loads
or large fanouts may require external buffers or latches.
The default output mode is CMOS, with each channel output
on separate busses as shown in Figure 2. The output can also be
configured for interleaved CMOS via the SPI port. In interleaved
CMOS mode, the data for both channels is output through the
Channel A output bits, and the Channel B output is placed into
high impedance mode. The timing diagram for interleaved
CMOS output mode is shown in Figure 3.
The output data format can be selected for either offset binary
or twos complement by setting the SCLK/DFS pin when operating
in the external pin mode (see Table 12).
Figure 83. AD9268-80 Power and Current vs. Encode Frequency (LVDS
1.0
0.8
0.6
0.4
0.2
0
25
35
ENCODE FREQUENCY (MSPS)
TOTAL POWER
45
Output Mode)
I
AVDD
55
I
DRVDD
65
75
0.25
0.20
0.15
0.10
0.05
0

Related parts for AD9268