AD9260 Analog Devices, AD9260 Datasheet - Page 30

no-image

AD9260

Manufacturer Part Number
AD9260
Description
16-Bit High Speed Oversampled A/D Converter
Manufacturer
Analog Devices
Datasheet

Specifications of AD9260

Resolution (bits)
16bit
# Chan
1
Sample Rate
2.5MSPS
Interface
Par
Analog Input Type
Diff-Uni
Ain Range
4 V p-p
Adc Architecture
Sigma-Delta
Pkg Type
QFP

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD9260AS
Manufacturer:
AD
Quantity:
672
Company:
Part Number:
AD9260AS
Quantity:
50
Part Number:
AD9260ASZ
Manufacturer:
ADI
Quantity:
100
Part Number:
AD9260ASZ
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
AD9260ASZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD9260ASZ
Quantity:
80
Part Number:
AD9260ASZRL
Manufacturer:
Analog Devices Inc
Quantity:
10 000
AD9260
DIGITAL INPUTS AND OUTPUTS
DIGITAL OUTPUTS
The AD9260 output data is presented in a twos complement
format. Table 13 indicates the output data formats for various
input ranges and decimation modes. A straight binary output
data format can be created by inverting the MSB.
Table 13. Output Data Format
Input (V)
8× Decimation Mode
VINA–VINB
VINA–VINB
VINA–VINB
VINA–VINB
VINA–VINB
4× Decimation Mode
VINA–VINB
VINA–VINB
VINA–VINB
VINA–VINB
VINA–VINB
2× Decimation Mode
VINA–VINB
VINA–VINB
VINA–VINB
VINA–VINB
VINA–VINB
The slightly different ± full-scale input voltage conditions and
their corresponding digital output code for the 4× and
2× decimation modes can be attributed to the different digital
scaling factors applied to each AD9260 FIR decimation stage for
filter optimization purposes. Thus, a + full-scale reading of
0111 1111 1111 1111 and – full-scale reading of 1000 0000 0000
0000 is unachievable in the 2× and 4× decimation modes. As a
result, a digital overrange condition can never exist in the 2× or
the 4× decimation mode and thus OTR being set high indicates
an overrange condition in the analog modulator.
The output data format in 1× decimation differs from that in
2×, 4× and 8× decimation modes. In 1× decimation mode the
output data remains in a twos complement format, but the
digital numbers are scaled by a factor of 7/128. This factor of
7/128 is the product of an internal scale factor of 7/8 in the
analog modulator and a 1/16 scale factor caused by LSB
justification of the 12-bit modulator data.
CS and Read Pins
The CS and READ pins control the state of the output data pins
(BIT1–BIT16) on the AD9260. The CS pin is active low and the
READ pin is active high. When CS and READ are both active
the ADC data is driven on the output data pins, otherwise the
output data pins are in a high-impedance (Hi-Z) state. Table 14
indicates the relationship between the CS and READ pins and
the state of Pins Bit 1 to Bit 16.
Condition (V)
< –0.8 ×VREF
= –0.8 ×VREF
= 0
= +0.8 ×VREF – 1 LSB
>= + 0.8 ×VREF
< –0.825 ×VREF
= –0.825 ×VREF
= 0
= +0.825 ×VREF –1 LSB
>= + 0.825 ×VREF
< –0.825 ×VREF
= –0.825 ×VREF
= 0
= +0.825 ×VREF –1 LSB
>= + 0.825 ×VREF
Digital Output
1000 0000 0000 0000
1000 0000 0000 0000
0000 0000 0000 0000
0111 1111 1111 1111
0111 1111 1111 1111
1000 0001 0001 1100
1000 0001 0000 1100
0000 0000 0000 0000
0111 1110 1110 0011
0111 1110 1110 0011
1000 0000 0100 0001
1000 0000 0100 0001
0000 0000 0000 0000
0111 1111 1011 1110
0111 1111 1011 1110
Rev. C | Page 30 of 44
Table 14. CS and READ Pin Functionality
CS
Low
Low
High
High
DAV Pin
The DAV pin indicates when the output data of the AD9260 is
valid. Digital output data is updated on the rising edge of DAV.
The data hold time (t
DAV and the digital data output pins (BIT1–BIT16) as well as
the particular decimation mode. The internal DAV driver is
sized to be larger than the drivers pertaining to the digital data
outputs to ensure that rising edge of DAV occurs before the data
transitions under similar loading conditions (i.e., fanout)
regardless of mode. Note that minimum data hold (t
is specified in the Figure 4 timing diagram from the 50% point
of DAV’s rising edge to the 50% of data transition using a
capacitive load of 20 pF for DAV and BIT1–BIT16. Applications
interfacing to TTL logic and/or having larger capacitive loading
for DAV than BIT1–BIT16 should consider latching data on the
falling edge of DAV since the falling edge of DAV occurs well
after the data has transitioned in the case of the 2×, 4×, and 8×
modes. The duty cycle of DAV is approximately 50% and it
remains active independent of CS and READ.
RESET Pin
The RESET pin is an asynchronous digital input that is active
low. Upon asserting RESET low, the clocks in the digital
decimation filters are disabled, the DAV pin goes low and the
data on the digital output data pins (Bit 1–Bit 16) is invalid. In
addition, the analog modulator in the AD9260 and internal
clock dividers used in the decimation filters are reset and will
remain reset as long as RESET is maintained low. In the 2×, 4×,
or 8× mode, the RESET must remain low for at least a clock
period to ensure all the clock dividers and analog modulator
are reset. Upon bringing RESET high, the internal clock
dividers will begin to count again on the next falling edge of
CLK and DAV will go high approximately 15 ns after this
falling edge, resuming normal operation. Refer to Figure 9 for
a timing diagram.
The state of the internal decimation filters in the AD9260
remains unchanged when RESET is asserted low. Consequently,
when RESET is pulsed low, this resets the analog modulator but
does not clear all the data in the digital filters. The data in the
filters is corrupted by the effect of resetting the analog
modulator (this causes an abrupt change at the input of the
digital filter and this change is unrelated to the signal at the
input of the A/D converter). Similarly, in multiplexed
READ
Low
High
Low
High
H
) is dependent on the external loading of
Condition of Data Output Pins
Data Output Pins in Hi-Z State
ADC Data on Output Pins
Data Output Pins in Hi-Z State
Data Output Pins in Hi-Z State
H
) of 3.5 ns

Related parts for AD9260